To calculate the pH of a solution that has a [H3O+] of 7.22x10^-7. You would do the following
pH=-log[H3O+]
pH=-log[7.22x10^-7]
pH=?
Note that it says oxygen "gas"
So you need the atomic mass of oxygen gas
Look at your periodic table, you'll see 15.9994 under oxygen
Oxygen gas has a formula of O2 therefore,
(15.9994) times 2= Oxygen gas atomic mass=31.9988
Mol= Mass/Atomic Mass
=62.3 g/ 31.9988 g/mol = 1.95 mol
now look at the ratio of C2H6 and O2, notice there is an invisible number beside each of them, at that "invisible number" is =1
1 C2H6 + 1 O2 -> products
this means that for 1 mol of C2H6, 1 mol of O2 has to react with it
Thus as we have 1.95 moles of O2, we need 1.95 moles of C2H6
For this problem we use the wave equation. It is expressed as the speed (c) is equal to the product of frequency (f) and wavelength (v).
c = v x f
We know the wavelength of the an red light which is 6.5 x 10^-7 m. Now, we solve for the wavelength of the unknown wave to see the relation between the two waves.
2.998 X 10^8 = 5.3 X 10^15 X v
v = 2.998 X 10^8 / (5.3 X 10^15) = 5.657 X 10^-8 m
Therefore, the wavelength of the unknown wave is less than the wavelength of the red light.
That photon's energy is equal to Planck 's constant, multiplied by the light frequency, h is always 6.63* 10^ -34 Joule seconds and the frequency is 6* 10^ 14 Hz.
Answer: 2nd option
Explanation: took the quizz