Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
Answer:
The statement is true for every n between 0 and 77 and it is false for 
Step-by-step explanation:
First, observe that, for n=0 and n=1 the statement is true:
For n=0: 
For n=1: 
From this point we will assume that 
As we can see,
and
. Then,

Now, we will use the formula for the sum of the first 4th powers:

Therefore:

and, because
,

Observe that, because
and is an integer,

In concusion, the statement is true if and only if n is a non negative integer such that 
So, 78 is the smallest value of n that does not satisfy the inequality.
Note: If you compute
for 77 and 78 you will obtain:
Check the picture below.
make sure your calculator is in Degree mode.
does it meet the requirements? well, 3.43 < 4.8.
The probability of type II error will decrease if the level of significance of a hypothesis test is raised from 0.005 to 0.2.
<h3 /><h3>What is a type II error?</h3>
A type II error occurs when a false null hypothesis is not rejected or a true alternative hypothesis is mistakenly rejected.
It is denoted by 'β'. The power of the hypothesis is given by '1 - β'.
<h3>How the type II error is related to the significance level?</h3>
The relation between type II error and the significance level(α):
- The higher values of significance level make it easier to reject the null hypothesis. So, the probability of type II error decreases.
- The lower values of significance level make it fail to reject a false null hypothesis. So, the probability of type II error increases.
- Thus, if the significance level increases, the type II error decreases and vice-versa.
From this, it is known that when the significance level of the given hypothesis test is raised from 0.005 to 0.2, the probability of type II error will decrease.
Learn more about type II error of a hypothesis test here:
brainly.com/question/15221256
#SPJ4
divisions between $389$ and $390$ so each division is $\frac{390-389}{10}=0.1$
A is 8 division from $389$, so, A is $389+8\times 0.1=389.8$
similarly, C is one division behind $389$ so it is $389-1\times 0.1=388.9$
and B is $390.3$