Answer:
yes
Step-by-step explanation:
Try this option:
the rule: if f(-x)=f(x), then the function f(x) is even, if f(-x)=-f(x) then the function is odd.
1. f(x)=-5x⁴-2;
if to substitute x→(-x), then f(-x)=-5*(-x)⁴-2; ⇔ f(-x)=-5x⁴-2, in other words f(x)=f(-x), it means that this function is even.
2. f(x)=x³+2x.
if to substitute x→(-x), then f(-x)=(-x)³+2*(-x); ⇔ f(-x)=-(x³+2x), in other words f(-x)=-f(x), it means that this function is odd.
1.) f(x)=7(b)^x-2
x=0→f(0)=7(b)^0-2=7(1)-2=7-2→f(0)=5→(x,f(x))=(0,5) Ok
2.) f(x)=-3(b)^x-5
x=0→f(0)=-3(b)^0-5=-3(1)-5=-3-5→f(0)=-8→(x,f(x))=(0,-8) No
3.) f(x)=5(b)^x-1
x=0→f(0)=5(b)^0-1=5(1)-1=5-1→f(0)=4→(x,f(x))=(0,4) No
4.) f(x)=-5(b)^x+10
x=0→f(0)=-5(b)^0+10=-5(1)+10=-5+10→f(0)=5→(x,f(x))=(0,5) Ok
5.) f(x)=2(b)^x+5
x=0→f(0)=2(b)^0+5=2(1)+5=2+5→f(0)=7→(x,f(x))=(0,7) No
Answers:
First option: f(x)=7(b)^x-2
Fourth option: f(x)=-5(b)^x+10
Answer:
20%
Step-by-step explanation:
Answer:
The answer would be C im positive
Step-by-step explanation: