Answer:
The nuclear charge increases from boron to carbon, but there is no additional shielding( that is no additional shells).
Explanation:
First of all, we must know the electron configuration of carbon and boron.
Boron- 1s2 2s2 2p1
Carbon- 1s2 2s2 2p2
Moving from boron to carbon, the effective nuclear charge increases without a corresponding increase in the number of shells. Remember that shielding increases with increase in the number of intervening shells between the outermost electron and the nucleus. Since there isn't an increase in shells, boron experience a lower screening effect.
From
Zeff= Z- S
The Z for carbon is 6 while for boron is 5 even though both have the same number of screening electron S(4 screening electrons). Hence it is expected the Zeff(effective nuclear charge) for boron will be less than that of carbon.
Answer:
d an acid - base reaction.
Explanation:
Answer:
732.0601 mmHg
Explanation:
Given data:
Pressure = 97.6 KPa
Given pressure in mmHg = ?
Solution:
Kilo pascal and millimeter mercury both are units of pressure.
Kilo pascal is denoted as "KPa"
Millimeter mercury is denoted as " mmHg"
Kilo pascal is measure of force per unit area while also define as newton per meter square.
It is manometric unit of pressure. It is the pressure generated by column of mercury one millimeter high.
Conversation of kilopascal to mmHg:
97.6 × 7.501 = 732.0601 mmHg
A molecular size affects the rate of evaporation when the larger the intermolecular forces in a compound, the slower the evaporation rate and this correlates with temperature change.
Molecular size seems to have an effect on evaporation rates in that the larger a molecule gets or grows from a base chemical formula, its evaporation rate will get slower.
<h3>What is the molecular size?</h3>
This is a measure of the area a molecule occupies in three-dimensional space as this relates to the physical size of an individual molecule.
Hence, we can see that a molecular size affects the rate of evaporation the larger the forces, the lower the rate.
Read more about<em> molecular size</em> here:
brainly.com/question/16616599
#SPJ1