<span> aluminum is an element. All elements are pure substances, so that means they are homogenous.
please mark as brainliest
</span>
Answer: Cations (positively-charged ions) and anions (negatively-charged ions) are formed when a metal loses electrons, and a nonmetal gains those electrons. The electrostatic attraction between the positives and negatives brings the particles together and creates an ionic compound, such as sodium chloride.
Answer:
Na is the element from the second period that has the largest atomic radius
Explanation:
The atomic radius is a chemist property from the periodic table. It is decreased when we move in a period from the periodic, so the element in the second period that has the largest radius is Na, and the shortest, the Ar
The atomic radius indicates the distance between the nucleus and the outermost valence layer. In the periods it decreases with increasing Atomic Number, to the right, due to the attraction that the nucleus exerts on the electrons of the outermost orbitals, thus decreasing the core-electron distance.
Answer:
1 x 10⁻¹¹ M
Explanation:
<u>(Step 1)</u>
Determine the pH.
pH = -log[H⁺]
pH = -log[1 x 10⁻³ M]
pH = 3
<u>(Step 2)</u>
Determine the pOH.
pH + pOH = 14
3 + pOH = 14
pOH = 11
<u>(Step 3)</u>
Determine the hydroxide (OH⁻) concentration.
[OH⁻] = 10^-pOH
[OH⁻] = 10⁻¹¹
[OH⁻] = 1 x 10⁻¹¹ M
Problem 2
You start out with 216 ugrams of Fermium - 253. After 3 days, you will have 1/2 as much. 108 ugrams is what you have.
Another 3 days goes by. You started with 108 ugrams. That gets cut in 1/2 again. Now you have 54 ugrams.
Finally another 3 days goes by. You started with 54 ugrams. you now have 1/2 as much which would be 27 ugrams
#days Amount in micrograms
0 216
3 108
6 54
9 27
Problem One
You are using Nitrogen as your base example. The first thing you should do is fill in the table. Then you should try and make some rules. You need the rules in case the exam you are preparing for picks a different element to talk about these bond tendencies. In any event, it's handy to think this way.
<em><u>Table</u></em>
Bond Energy Kj/Mol Bond Length pico meters
N - N 167 145
N=N 418 125
N≡N 942 110
<em><u>Rules</u></em>
As the number of bonds INCREASES, the energy contained in the bond goes UP
As the number of bonds INCREASES, the length of the bond goes DOWN.