Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
Answer:
d. It is equal to the component of the gravitational force acting down the ramp.
Explanation:
The stationary crate is inclined at an angle with the horizontal. The Recall, Frictional Force is any Force that opposes motion.
Because the Force of Friction that is opposing the motion of the crate along the inclination side.
Therefore this Frictional force is balanced or equal to the force that is driving the inclined force.
Hence Frictional Force is equal to the Gravitational Force that is acting in the ramp, that is why the crate is stationery.
Answer:
The answer is c. 11.42 Ohm
Explanation:
The conductor's resistance is calculated by the formula in the figure.
So, you have to replace the given values into the formula.
Resistance of a conductor is equal to the product of rho by the lengh of the conductor divided the cross-sectional area of the conductor.

Answer:
I think that when a book hits the ground its potential energy converts into kinetic energy and then kinetic energy is transformed into sound and heat energy.
Explanation:
Answer:

Explanation:
1. Find the equation of eht maximal friction force:
The maximal friction force is given by the equation
, where μs is the static friction coefficient, m is the car´s mass and g is the gravitational force.
2. Replace values in the equation to find the answer:

