Answer:
Using the given values
F = K q^2 / r^2 = 9 * 10E9 * (1.6 * E-19)^2 / (5.18 * E-15)^2 N
E = 9 * 1.6^2 / 5.18^2 * 10 = 8.5 N
Answer: The person sitting in the middle of the train sees the back of the train enter ing the tunnel before the front end comes out.
Explanation:
To develop the problem it is necessary to apply the kinematic equations for the description of the position, speed and acceleration.
In turn, we will resort to the application of Newton's second law.
PART A) For the first part we look for the time, in a constant acceleration, knowing the speeds and the displacement therefore we know that,

Where,
X = Desplazamiento
V = Velocity
t = Time
In this case there is no initial displacement or initial velocity, therefore

Clearing for time,



PART B) This is a question about the impulse of bodies, where we turn to Newton's second law, because:
F = ma
Where,
m=mass
a = acceleration
Acceleration can also be written as,

Then





Negative symbol is because the force is opposite of the direction of moton.
PART C) Acceleration through kinematics equation is defined as




The gravity is equal to 0.8, then the acceleration is


So we want to know what is the magnitude of the horizontal component of acceleration ah if we know that the overall acceleration a=12 m/s^2 and the angle of overall acceleration and the horizontal acceleration is α=50°. We know that ah=a*cosα. So now it isn't hard to get the horizontal component: ah=12*cos50=12*0.64=7.71 m/s^2. So the correct answer is ah=7.71 m/s^2.