Answer:
3.33 minutes (3 minutes and 20 seconds)
Explanation:
Speed of the runner = s = 5 m/s
We need to calculate how will it take for runner to complete 1 km. We have the speed, the distance and we need to find the time. Before performing any calculations, we must convert the values to same units.
Speed is in m/s and distance is in kilometers. So we have to either convert speed to km/s or distance into meters. In this case, converting distance into meters would be a convenient option.
1 kilo meters = 1000 meters
The distance, speed and time are related by the equation:
Distance = Speed x Time
So,
Time = Distance/Speed
Using the values, we get:
t = 1000/5
t = 200 seconds
This means, the runner can complete 1 kilometers in 200 seconds. Since, there are 60 seconds in a minute, we can convert this time to minutes, by dividing it by 60. i.e.

Thus, it will take the runner 3.33 minutes (3 minutes and 20 seconds) to travel 1 km.
Answer:
The term that refers the rate change of motion is acceleration.
Explanation:
The rate at which the motion changes is called as the acceleration. It is a vector quantity with the SI unit meters. There is device to measure the acceleration called as accelerometer. The acceleration is also affected by the increase and the decrease of the force and mass. It is directly proportional to it. The acceleration increases with force, but found to be decreasing with mass. It can be calculated by taking the product of displacement by time.
Answer:d) Stacks
Explanation: A stack or sea stack is a geological landform consisting of a steep and often vertical column or columns of rock in the sea near a coast, formed by wave erosion. Stacks are formed over time by wind and water, processes of coastal geomorphology.
Answer:
The length of the Mercury column of thermometer at ice point is 20mm and 220mm at steam point . when the same Thermometer is placed in contact with another body ,it reads 5°c.what will the length of the Mercury column at the temperature?
Answer:
Following are the answer to this question:
Explanation:
In option (a):
- The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.
- Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.
In option (b):
- Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.
- Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.