In 1842, Julius Robert Mayer discovered The law of conservation of Energy. It its most compact form, it it now called The first law of Thermodynamics
Energy can neither be created nor destroyed, it can only be changed to another form of energy.
The block moves with constant velocity: for Newton's second law, this means that the resultant of the forces acting on the block is zero, because the acceleration is zero.
We are only concerned about the horizontal direction, and there are only two forces acting along this direction: the force F pushing the block and the frictional force

acting against the motion. Since their resultant must be zero, we have:

The frictional force is

where

is the coefficient of kinetic friction

is the weight of the block.
Substituting these values, we find the magnitude of the force F:
105 miles because you have to use the gif arable
(A) We can solve the problem by using Ohm's law, which states:

where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know

and

, therefore we can rearrange Ohm's law to find the current through the device:

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:

where

is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.
Answer: Option (B) is the correct answer.
Explanation:
As we know that the temperature when the vapor pressure of liquid becomes equal to the atmospheric pressure surrounding the liquid. And, during this temperature liquid state of substance changes into vapor state.
But during this process of change in state of substance the temperature will cease to change for some time because unless and until all the liquid molecules do not convert into vapor state the temperature will not rise or change.
As the boiling point of water is
so the temperature ceases to change from
to
.
Therefore, we can conclude that when heating water, during
to
temperature range the temperature will cease to change for some time.