The nucleons(protons and neutrons) are held together by means of this strong force. If this strong never existed, all the nucleus will blow themselves due to strong repulsive force between protons(neutron has no charge).
Thats it!
If I explain beyond, it will surely bounce off your head. Anyways, if you wanna know more bout it, ping me. (:
Answer:

Explanation:
= Strain = 0.49
= 3.1 MPa
At t = Time = 32 s
= 0.41 MPa
= Time-independent constant
Stress relation with time

at t = 32 s

The time independent constant is 16.0787 s

At t = 6

From the first equation



Answer:
To summarize, <em><u>Jane's star</u></em> has a <em><u>red</u></em> light and <em><u>is traveling towards</u></em> the <em><u>Earth</u></em> while <em><u>John's star </u></em>has a <em><u>blue</u></em> light and <em><u>is traveling away</u></em> from the <em><u>Earth</u></em>. This is a <em><u>prime example</u></em> of the <em><u>Doppler Effect</u></em> in <em><u>motion</u></em>. The stars <em><u>look different </u></em>because <em><u>they are traveling in different directions.</u></em>
B) law of conservation of momentum
It states that the total momentum of a system before impact is the same as the total momentum of the system after impact.
In this case total momentum before impact:
10kg*5m/s + 5kg * 0m/s = 50 kg m/s
After Impact:
10kg*0m/s + 5kg*10m/s = 50 kg m/s
You can see the momentum before and after impact is same as 50 kg m/s
Of course we assumed that the first cart stopped after the impact, and there are no energy losses.
B is the awser
good luck and hope it helps