Answer:
a = 1.152s
b = 0.817 m
c = 7.29m/s
Explanation: let the following
From the first equation of linear motion
V = u+at..........1
parameters be represented as :
t = Time taken
v = Final velocity
a = Acceleration due to gravity = 9.8m/s²
u = Initial velocity = 4 m/s
s = Displacement
V = 0
Substitute the values into equation 1
0 = 4-9.8(t)
-4 = -9.8t
t = 4/9.8
t = 0.408s
From : s = ut+1/2at^2.........2
S = 4×0.408+0.5(-9.8)×0.408^2
S= 1.632-4.9(0.166)
S = 1.632-0.815
S = 0.817m
Her highest height above the board is 0.817 m
Total height she would fall is 0.817+1.90 = 2.717 m
From equation 2
s = ut+1/2at^2
2.717 m = 0t+0.5(9.8)t^2
2.717 m = 0+4.9t^2
2.717 m = 4.9t^2
2.717/4.9 = t^2
0.554 =t^2
t =√0.554
t = 0.744s
Hence, her feet were in the air for 0.744+0.408seconds
= 1.152s
Also recall from equation 1
V= u+at
V = 0+9.8(0.744)
V = 7.29m/s
Hence, the velocity when she hits the water is 7.29m/s
Finally,
a = 1.152s
b = 0.817 m
c = 7.29m/s
The right answer to this question is A. a crest that is toppling over. When a surfer rides an ocean wave on her surfboard, she is actually riding on a crest. The crest is the point on a wave with the maximum value or upward displacement within a cycle.
<h2>The voltmeter reading will be 35.7 volt </h2>
Explanation:
The resistor 1000 ohm and 4000 ohm are connected in parallel .
Their combined resistance is supposed R₁
Thus
=
+
or R₁ = 800 ohm
Therefore the total resistance in circuit is = 2000 + 800 = 2800 ohm
Because these are in series .
We can find current flowing through the circuit I =
=
= 
here R is total resistance .
The potential difference across 1000 ohm =
x 1000 = 35.7 volt
Thus voltmeter reading will be 35.7 volt
Answer:
a = -4/5 m/s^2
Explanation:
Acceleration = change in velocity / time
change in velocity = final velocity - initial velocity
a = (20 m/s - 60 m/s) / 50 s
a = -40 m/s / 50 s
a = -4/5 m/s^2
hope this helps! <3
Because its expose to the wires inside that could electrify you.