Answer:
The value is
Explanation:
From the question we are told that
The mass of matter converted to energy on first test is
The mass of matter converted to energy on second test
Generally the amount of energy that was released by the explosion is mathematically represented as
=>
=>
Answer:
All steps are 20 * 100 (break the rest into appropriate pieces)
You can multiply as follows
(2000) * ((3 * 60) + (2 * 60) + 60)
V = 2000 * 6 * 60) = 720,000 cm^3 = .72 m^3
.72 m^3 * 2400 kg / m^3 = 1728 kg
Observer A is moving inside the train
so here observer A will not be able to see the change in position of train as he is standing in the same reference frame
So here as per observer A the train will remain at rest and its not moving at all
Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body
So here observer B will see the actual motion of train which is moving in forward direction away from the platform
Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction
So the distance between them will decrease at faster rate
Now as per Newton's II law
F = ma
Now if train apply the brakes the net force on it will be opposite to its motion
So we can say
- F = ma
so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate
It is not affected by the gravity because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train
So there is no effect on train motion
As mass increases kinetic energy also increases; kinetic energy is directly proportional to mass so whatever is done to either affects the other one the same. i hope this helps :)