Answer:No, it doesn't move easily downward because it will try to resist the movement ,due to a resistance force of inertia that it possess at rest.
Explanation:when an object has higher or larger mass it tends to resist any motion given to it unlike the one with lower mass.
The larger the mass the more resistance force an object has.
One of the components that affect the period is gravity (the other is length). This gravity is basically the value of the effective acceleration that acts on the body due to gravity. When the elevator is over free fall, the effective gravity becomes zero. Mathematically this can be visualized as,

Since this value is zero, the period would tend to be infinite,

Therefore the frequency that is inversely proportional to the period would be defined as



In this way there is no frequency on the body which will not generate any oscillation on the body
Answer:
A. DT is given by Q= MCs DT
m = mass of the substances
Cs= is it's specific heat capacity
Ck= <u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>Q</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Mk ×DTk
=<u>2</u><u>5</u><u>0</u><u> </u><u>×</u><u> </u><u>9</u><u> </u><u>×</u><u> </u><u>5</u><u> </u><u> </u>
129
=Dt = 180.1085271
answer is 180degree C.
Explanation:
B. = <u>2</u><u>5</u><u>×</u><u>1</u><u>0</u> ×100
1.082
=<u>2</u><u>5</u><u>0</u><u>0</u>
1.082
= 23105.360 g/kj.
Answer:
Any medium or material of high refractive density e.g Water which refracts the light rays 1&2 away from their normal
Answer:
t = 1.659s
Explanation:
We can use the kinematics equations to solve this questions:
v = u + at

where v = Final Velocity, u = initial velocity, a = acceleration, t = time, s = displacement
a) Given information from the question,
u =
(Convert km/h to m/s first)
a = 
s = 35m
Now we can substitute these values into the 2nd kinematics equation to find v, final velocity.

b) Now we have the final velocity, we can substitute the values into the first kinematics equation to find t , the time taken.
v = u + at
22.761 = 19.444 + 2t
2t = 22.761 - 19.444
t =
t = 1.659s