Answer:
Planet C
Explanation:
The figure of the problem is missing: find it in attachment.
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
In this problem, we have four planets around planet X, and the mass of each planet is proportional to its size in the figure.
As we can see from the previous equation, the magnitude of the gravitational force is proportional to the mass of the planets: therefore, the planet with largest mass will exert the largest gravitational force on planet X.
From the figure, we see that planet C has the largest size, so the largest mass: therefore, planet C exerts the greatest gravitational force on planet X.
Answer:
Intensity of beam 18 feet below the surface is about 0.02%
Explanation:
Using Lambert's law
Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium
then dI / I = kdt
taking log,
ln(I) = kt + ln C
I = Ce^kt
t=0=>I=I(0)=>C=I(0)
I = I(0)e^kt
t=3 & I=0.25I(0)=>0.25=e^3k
k = ln(0.25)/3
k = -1.386/3
k = -0.4621
I = I(0)e^(-0.4621t)
I(18) = I(0)e^(-0.4621*18)
I(18) = 0.00024413I(0)
Intensity of beam 18 feet below the surface is about 0.2%
The second one is the answer
Answer:modeled as an electromagnetic wave. In this model, a changing electric field creates a changing magnetic field.
Explanation:
Answer:
4 electric pole is the answer.