Answer is: 13181,7 kJ of energy <span>is released when 10.5 moles of acetylene is burned.
</span>Balanced chemical reaction: C₂H₂ + 5/2O₂ → 2CO₂ + H₂O.
<span>ΔHrxn = sum of
ΔHf (products of reaction) - sum of ΔHf (reactants).</span><span>
Or ΔHrxn = ∑ΔHf (products of reaction)
- ∑ΔHf (reactants).
ΔHrxn - enthalpy change of chemical reaction.
<span>ΔHf - enthalpy of formation of reactants or
products.
</span></span>ΔHrxn = (2·(-393,5) + (-241,8)) - 226,6 · kJ/mol.
ΔHrxn = -1255,4 kJ/mol.
Make proportion: 1 mol (C₂H₂) : -1255,4 kJ = 10,5 mol(C₂H₂) : Q.
Q = 13181,7 kJ.
A scientist needs to check several parameters before coming
to a conclusion about the amount of water pollution. The scientists needs to
check the amount of dissolved oxygen in the water, temperature of the water,
the clarity of the water, the PH level of the water and also the amount of
bacteria present in the water. There may be other criteria’s, but the mentioned
ones are enough to gauge the amount of pollution in the water. Scientists often
takes fish and aquatic plants from the water to be tested to check the amount
of pollution indirectly affecting these species.
Answer:
Phosphorus trichloride, PCl₃ undergoes change in bonding and molecular force of attraction, causing it to be liquid at room temperature.
Explanation:
Unlike other chlorides of Period 3 elements, Phosphorus trichloride, PCl₃ changes the structure of its molecular bonding from ionic to covalent bonds as it transitions to fluids (liquids or gases). The PCl₃ molecule also has the weak Van der Waals dispersion and dipole-dipole attraction, making it a fuming liquid at room temperature, with no electrical conductivity.
19372)19292
Hahaha ss
Qowieuww