<u>Answer:</u> The final volume of the gas comes out to be 4 L.
<u>Explanation:</u>
To calculate the volume with changing pressure, we use the equation given by Boyle's law.
This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
Mathematically,
(At constant temperature and number of moles)
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Hence, the final volume of the gas will be 4 L.
Answer:When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases. The motion and spacing of the particles determines the state of matter of the substance. ... They contract when they lose their heat.
Explanation:Google
The answer to this question would be: Because the increase of temperature will increase volume.
Using PV=nRT formula we can see that temperature increase will cause an increase in volume. Overheating will cause the volume increase, then increasing the volume. If the percent value used is based on the volume, it will seem that the water is increased. But if the percent is using mass, there will be no increases.
That is why sometimes scientists using molality in a reaction with high temperature changes.
One is a mixture and the other is a compound
Answer:
Condenses at 27.25K.
Freezes at 24.65K.
Explanation:
In order to solve this above question, there is is need to make use of the following equation. The main idea here is to convert degree celsius to Kelvin. Hence,
0°C + 273.15 = 273.15K---------------------(1).
Therefore, we will make use of the above equation (1) and slot in the values for at degree celsius at which it condenses and at degree celsius at which it freezes.
So, we have at temperature at which it condenses:
-245.9°C + 273.15 = 27.25K.
Also, we have at temperature at which it freezes.
-248.5°C + 273.15 = 24.65K.