1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ludmilkaskok [199]
3 years ago
5

An ink-jet printer steers charged ink drops vertically. Each drop of ink has a mass of 10-11 kg, and a charge due to 500,000 ext

ra electrons. It goes through two electrodes that gives a vertical acceleration of 104 m/s2. The deflecting electric field is _____ MV/m.
Physics
1 answer:
Sphinxa [80]3 years ago
4 0

Answer:

  E = 1.25 MV / m

Explanation:

For this exercise let's use Newton's second law

          F = m a

where the force is electric

          F = q E

we substitute

          q E = m a

          E = m a / q

indicate there are 500,000 excess electrons

          q = 500000 e

          q = 500000 1.6 10⁻¹⁹

          q = 8 10⁻¹⁴ C

the mass is m = 10⁻¹¹ kg and the acceleration a = 10⁴ m / s²

         

let's calculate

          E = 10⁻¹¹ 10⁴ / 8 10⁻¹⁴

          E = 0.125 10⁷ V / m = 1.25 10⁶ V / m

          E = 1.25 MV / m

You might be interested in
A thin spherical spherical shell of radius R which carried a uniform surface charge density σ. Write an expression for the volum
ozzi

Answer:

Explanation:

From the given information:

We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then

The volume charge distribution relates to the radial direction at r = R

∴

\rho (r) \  \alpha  \  \delta (r -R)

\rho (r) = k \  \delta (r -R) \ \  at \ \  (r = R)

\rho (r) = 0\ \ since \ r< R  \ \ or  \ \ r>R---- (1)

To find the constant k, we  examine the total charge Q which is:

Q = \int \rho (r) \ dV = \int \sigma \times dA

Q = \int \rho (r) \ dV = \sigma \times4 \pi R^2

∴

\int ^{2 \pi}_{0} \int ^{\pi}_{0} \int ^{R}_{0} \rho (r) r^2sin \theta  \ dr \ d\theta \ d\phi = \sigma \times 4 \pi R^2

\int^{2 \pi}_{0} d \phi* \int ^{\pi}_{0} \ sin \theta d \theta * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

(2 \pi)(2) * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

Thus;

k * 4 \pi  \int ^{R}_{0}  \delta (r -R) * r^2dr = \sigma \times  R^2

k * \int ^{R}_{0}  \delta (r -R)  r^2dr = \sigma \times  R^2

k * R^2= \sigma \times  R^2

k  =   R^2 --- (2)

Hence, from equation (1), if k = \sigma

\mathbf{\rho (r) = \delta* \delta (r -R)  \ \  at   \ \  (r=R)}

\mathbf{\rho (r) =0 \ \  at   \ \  rR}

To verify the units:

\mathbf{\rho (r) =\sigma \ *  \ \delta (r-R)}

↓         ↓            ↓

c/m³    c/m³  ×   1/m            

Thus, the units are verified.

The integrated charge Q

Q = \int \rho (r) \ dV \\ \\ Q = \int ^{2 \ \pi}_{0} \int ^{\pi}_{0} \int ^R_0 \rho (r) \ \ r^2 \ \  sin \theta  \ dr \ d\theta \  d \phi  \\ \\  Q = \int ^{2 \pi}_{0} \  d \phi  \int ^{\pi}_{0} \ sin \theta  \int ^R_{0} \rho (r) r^2 \ dr

Q = (2 \pi) (2) \int ^R_0 \sigma * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  \int ^R_0  * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  *R^2    since  ( \int ^{xo}_{0} (x -x_o) f(x) \ dx = f(x_o) )

\mathbf{Q = 4 \pi R^2  \sigma  }

6 0
3 years ago
An eagle is flying horizontally at a speed of 3.80 m/s when the fish in her talons wiggles loose and falls into the lake 3.90 m
Dovator [93]

Answer:

the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal

Explanation:

initial veetical speed V₀y=0

Horizontal speed Vx = Vx₀= 3.80m/s

Vertical drop height= 3.90m

Let Vy = vertical speed when it got to the water downward.

g= 9.81m/s² = acceleration due to gravity

From kinematics equation of motion for vertical drop

Vy²= V₀y² +2 gh

Vy²= 0 + ( 2× 9.8 × 3.90)

Vy= √76.518

Vy=8.747457

Then we can calculate the velocity of the fish relative to the water when it hits the water using Resultant speed formula below

V= √Vy² + Vx²

V=√3.80² + 8.747457²

V=9.537m/s

The angle can also be calculated as

θ=tan⁻¹(Vy/Vx)

tan⁻¹( 8.747457/3.80)

=66.52⁰

the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal

6 0
3 years ago
Science whoever gets this will get a brainlest
Zanzabum

Answer:

I got it right xd

Explanation:

__________

6 0
3 years ago
Read 2 more answers
When you push a 2.00 kg book resting on a tabletop it takes 4.60 N to start the book sliding. What is the coefficient of static
natali 33 [55]

The coefficient of static friction is 0.234.

Answer:

Explanation:

Frictional force is equal to the product of coefficient of friction and normal force acting on any object.

So here the mass of the object is given as 2 kg, so the normal force will be acting under the influence of acceleration due to gravity.

Normal force = mass * acceleration due to gravity

Normal force = 2 * 9.8 = 19.6 N.

And the frictional force is given as 4.6 N, then

Coefficient of static friction = Frictional force/Normal force

Coefficient of static friction = 4.6 N / 19.6 N = 0.234

So the coefficient of static friction is 0.234.

3 0
3 years ago
A cyclist moves at a constant speed of 5 m/s if the cyclist does not accelerate during the next 20 seconds he will travel at?
Verizon [17]
5 m/s because the speed is constant 
8 0
3 years ago
Other questions:
  • A pool player hit a ball with a mass of 0.25kg. The ball travels at a velocity of 15 m/s for 0.75 s until it hits the side of th
    13·1 answer
  • This diagram represents a top-down view of an experiment on a table. The 250g and 100g masses are falling and are pulling the bl
    6·2 answers
  • The rings of Saturn occupy the region inside Saturn's Roche limit.
    15·1 answer
  • In which arrangement of magnets will all the magnets attract
    9·2 answers
  • A 0.12-kg softball is moving at 6 m/s when it is hit by a bat, causing it to reverse direction and have a speed of 14 m/s. what
    7·1 answer
  • A sound wave travels in a straight line at a constant speed of 660 mph. What is
    11·1 answer
  • Imagine a truck crashes into a building. What kind of sound wave does this make?
    12·1 answer
  • Scenario
    5·1 answer
  • What is the slope of the line plotted below?
    8·1 answer
  • What is the energy of a photon emitted with a wavelength of 518 nm?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!