1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
3 years ago
13

How much heat is lost by 2.0 grams of water if the temperature drops from 31 °C to 29 °C? The specific heat of water is 4.184 J/

(g • °C) *
1 point

a) 4.0 J

b) - 7.5 J

c)- 8.4 J

d) - 16.7 J​
Physics
1 answer:
Elanso [62]3 years ago
4 0

Given :

Mass of water, m = 2 grams.

The temperature of water drops from 31 °C to 29 °C .

The specific heat of water is 4.184 J/(g • °C).

To Find :

Amount of heat lost in this process.

Solution :

We know, heat lost is given by :

Heat\ lost,H = ms( T_f - T_i)\\\\H = 2\times 4.184 \times ( 31 - 29 )\ J\\\\H = 16.736\ J

Therefore, amount of heat lost in this process is 16.736 J.

You might be interested in
A flywheel in a motor is spinning at 510 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75
8_murik_8 [283]

Complete Question

A flywheel in a motor is spinning at 510 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm . The power is off for 40.0 s , and during this time the flywheel slows down uniformly due to friction in its axle bearings. During the time the power is off, the flywheel makes 210 complete revolutions. At what rate is the flywheel spinning when the power comes back on(in rpm)? How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?

Answer:

\theta=274rev

Explanation:

From the question we are told that:

Angular velocity \omega=510rpm

Mass m=40.kg

Diameter d 75=>0.75m

Off Time t=40.0s

Oscillation at Power off N=210

Generally the equation for Angular displacement is mathematically given by

 \theta_{\infty}=\frac{w+w_0}{t}t

 w=\frac{2*\theta_{\infty}}{t}-w_0

 w=\frac{28210}{40*(\frac{1}{60})}-510

 w=120rpm

Generally the equation for Time to come to rest is mathematically given by

 t=(\frac{\omega_0}{\omega_0-\omega})t

 t=(\frac{510}{510-120rpm})(40.0)(\frac{1}{60})

 t=0.87min

Therefore Angular displacement is

 \theta =(\frac{120+510}{2})0.87

 \theta=274rev

6 0
2 years ago
Two metra trains approach each other on separate but parallel tracks. one has a speed of 90 km/hr, the other 80 km/hr. initially
Gennadij [26K]

The trains take <u>57.4 s</u> to pass each other.

Two trains A and B move towards each other. Let A move along the positive x axis and B along the negative x axis.

therefore,

v_A=90 km/h\\ v_B=-80 km/h

The relative velocity of the train A with respect to B is given by,

v_A_B=v_A-v_B\\ =(90km/h)-(-80km/h)\\ =170km/h

If the train B is assumed to be at rest, the train A would appear to move towards it with a speed of 170 km/h.

The trains are a distance d = 2.71 km apart.

Since speed is the distance traveled per unit time, the time taken by the trains to cross each other is given by,

t= \frac{d}{v_A_B}

Substitute 2.71 km for d and 170 km/h for v_A_B

t= \frac{d}{v_A_B}\\ =\frac{2.71 km}{170 km/h} \\ =0.01594 h

Express the time in seconds.

t=(0.01594h)(3600s/h)=57.39s

Thus, the trains cross each other in <u>57.4 s</u>.

6 0
2 years ago
In a Hydrogen atom an electron rotates around a stationary proton in a circular orbit with an approximate radius of r =0.053nm.
leonid [27]

Answer:

(a): F_e = 8.202\times 10^{-8}\ \rm N.

(b): F_g = 3.6125\times 10^{-47}\ \rm N.

(c): \dfrac{F_e}{F_g}=2.27\times 10^{39}.

Explanation:

Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053\times 10^{-9} m.

Part (a):

According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges q_1 and q_2 respectively is given by

F_e = \dfrac{k|q_1||q_2|}{r^2}

where,

  • k = Coulomb's constant = 9\times 10^9\ \rm Nm^2/C^2.
  • r = distance of separation between the charges.

For the given system,

The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, q_1 = +1.6\times 10^{-19}\ C.

The charge on the electron, q_2 = -1.6\times 10^{-19}\ C.

These two are separated by the distance, r = 0.053\times 10^{-9}\ m.

Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

F_e = \dfrac{(9\times 10^9)\times |+1.6\times 10^{-19}|\times |-1.6\times 10^{-19}|}{(0.053\times 10^{-9})^2}=8.202\times 10^{-8}\ \rm N.

Part (b):

The gravitational force of attraction between two objects of masses m_1 and m_1 respectively is given by

F_g = \dfrac{Gm_1m_2}{r^2}.

where,

  • G = Universal Gravitational constant = 6.67\times 10^{-11}\ \rm Nm^2/kg^2.
  • r = distance of separation between the masses.

For the given system,

The mass of proton, m_1 = 1.67\times 10^{-27}\ kg.

The mass of the electron, m_2 = 9.11\times 10^{-31}\ kg.

Distance between the two, r = 0.053\times 10^{-9}\ m.

Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

F_g = \dfrac{(6.67\times 10^{-11})\times (1.67\times 10^{-27})\times (9.11\times 10^{-31})}{(0.053\times 10^{-9})^2}=3.6125\times 10^{-47}\ \rm N.

The ratio \dfrac{F_e}{F_g}:

\dfrac{F_e}{F_g}=\dfrac{8.202\times 10^{-8}}{3.6125\times 10^{-47}}=2.27\times 10^{39}.

6 0
3 years ago
Please solve for 15 points. Please don’t input a link.
melomori [17]

Answer:

a). Single replacement.

Explanation:

Because one element replaces another element in a compound

6 0
3 years ago
PLEASE HELP!! DUE SOON!!!
max2010maxim [7]

Answer:

See attached file :)

Hope this helps!

All the love, Ya boi Fraser :)

4 0
2 years ago
Read 2 more answers
Other questions:
  • What conditions are necessary for an artesian well
    6·1 answer
  • Bob is studying waves in science and learns that the energy of a wave is directly proportional to the square of the waves amplit
    12·2 answers
  • When waves of equal amplitude from two sources are in phase when they interact, it is called ________.?
    8·1 answer
  • Which statement about electromagnet is true
    6·2 answers
  • In which one(s) of the following situations will there be an INCREASE in Kinetic Energy? Group of answer choices A block slides
    14·1 answer
  • Im so confused can someone help. I’ll give you BRAINLIETS
    12·1 answer
  • To remove a nut from an old rusty bolt, you apply a 100-N force to the
    9·1 answer
  • Our planet heats unevenly, explain how this affects wind patterns. Use the words sea breeze and land breeze please :)
    11·2 answers
  • How does increasing energy affect the amplitude of a wave?​
    8·1 answer
  • Which of the following is true of creative people and thinking?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!