<h3><u>Answer and Explanation</u>;</h3>
- input force refers to the force exerted on a machine, also known as the effort, while the output force is the force machines produce or the Load. The ratio of output force to input force gives the mechanical advantage of a simple machine
- <em><u>The output force exerted by the rake must be less than the input force because one has to use force while raking. The force used to move the rake is the input force. </u></em>
- <em><u>The rake is not going to be able to convert all of the input force into output force, the force the rake applies to move the leaves, because of friction.</u></em>
Answer:
4515.49484 N
4329.10484 N
Explanation:
r = Radius of balloon = 4.4 m
m = Mass of balloon with instruments = 19 kg
g = Acceleration due to gravity = 9.81 m/s²
Volume of balloon

The Buoyant force = Weight of the air displaced

The buoyant force acting on the balloon is 4515.49484 N
Net force on the balloon

The net force on the balloon is given by 4329.10484 N
As the balloon goes up the pressure outside reduces as the density of air decreases while the air pressure inside the balloon is high hence, the radius of the balloon tend to increase as it rises to higher altitude.
Using
KE = ½mv² = ½×1500×19×19 = 270750 joules
Answer:
120 W lightbulb
Explanation:
Let the two lightbulb be A and B respectively.
Given the following data;
Power A = 120W
Power B = 90W
Voltage = 120V
To find the current flowing through each lightbulb;
a. For lightbulb A
Power = current * voltage
120 = current * 120
Current = 120/120
Current = 1 Ampere.
b. For lightbulb B
Current = power/voltage
Current = 90/120
Current = 0.75 Amperes
Therefore, the lightbulb that carries more current is A with 1 Ampere.