Antoine-Laurent Lavoisier was the first person to report the four element classification system but also ended up including some compounds rather than elements.
Answer:
refractive index of the unknown material is 1.33.
Explanation:
μ₁ = 1.21
incidence angle (i) = 41.9°
refraction angle (r) = 37.3°
Let us assume μ be the refractive index of the unknown material
according to snell's law of refraction.
μ₁ sin i = μ₂ sin r
1.21 × sin 41.9° = μ × sin 37.3°
μ = 1.33
hence the refractive index of the unknown material comes out top be 1.33
Answer:
0.76 rad/s^2
Explanation:
First, we convert the original and final velocity from rev/s to rad/s:


Now, we need to find the number of rads that the tire rotates in the 250m path. We use the arc length formula:

Now, we just use the formula:


There's so much going on here, in a short period of time.
<u>Before the kick</u>, as the foot swings toward the ball . . .
-- The net force on the ball is zero. That's why it just lays there and
does not accelerate in any direction.
-- The net force on the foot is 500N, originating in the leg, causing it to
accelerate toward the ball.
<u>During the kick</u> ... the 0.1 second or so that the foot is in contact with the ball ...
-- The net force on the ball is 500N. That's what makes it accelerate from
just laying there to taking off on a high arc.
-- The net force on the foot is zero ... 500N from the leg, pointing forward,
and 500N as the reaction force from the ball, pointing backward.
That's how the leg's speed remains constant ... creating a dent in the ball
until the ball accelerates to match the speed of the foot, and then drawing
out of the dent, as the ball accelerates to exceed the speed of the foot and
draw away from it.
Answer:
Mass of the car is independent of gravity
Explanation:
Here, we want to state the reason why even though we have the acceleration due to gravity absent on the moon, it is still difficult to accelerate a car on a level horizontal level on the moon.
The answer to this is that the mass of the car that we want to accelerate is independent of gravity.
Had it been that gravity has an effect on the mass of the said car, then we might conclude that it will not be difficult to accelerate the car on a horizontal surface on the moon.
But due to the fact that gravity has no effect on the mass of the car to be accelerated, then the problem we have on earth with accelerating the car is the same problem we will have on the moon if we try to accelerate the car on a horizontal level surface.