Answer: The possible structure for this compound is 2,4-dimethyl-3-pentanone
Explanation:
It should be noted that, If the 1H NMR spectrum of a compound with formula C7H14O gives a doublet at 9.2 ppm. The possible structure for this compound is 2,4-dimethyl-3-pentanone
<u>Answer:</u> The mass of sucrose required is 69.08 g
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 8.80 atm
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (sucrose) = ?
Molar mass of sucrose = 342.3 g/mol
Volume of solution = 564 mL (Density of water = 1 g/mL)
R = Gas constant = 
T = Temperature of the solution = 290 K
Putting values in above equation, we get:

Hence, the mass of sucrose required is 69.08 g
Heat of Fusion is defined as the energy required to turn a liquid into a solid, or said phase changing latent heat. In this case the only choice that represents that phase change is (1). Where the heat removed to turn a liquid of a substance into it's solid form is instead added to excite the bonds and liquify it. Yet, heat of fusion (s) ->(l)
is still the same as going from liquid to solid just one is adding and the other is removing, respectively.
Hello,
I'd like to introduce you to the magnet analogy:
-Opposite sides attract
-Same sides repel
The first part applies to chemistry, so positive hydrogen bonds tend to attract to negative adjacent molecules.
Answer:
0.46M NaS₂O₃ (Assuming KIO₃ solution with a concentration of 1.0M)
Explanation:
Based on the reaction:
6 Na₂S₂O₃ + KIO₃ + 5 KI + 3 H₂SO₄ → 3 Na₂S₄O₆ + 3 H₂O + 3 K₂SO₄ + 6 NaI
<em>6 moles of Na₂S₂O₃ react per mole of KIO₃</em>
Assuming the molarity of the KIO₃ solution is 0,1M:
Moles of KIO₃: = 5.0x10⁻³L ₓ (0.1 mol / L) = <em>5.0x10⁻⁴ moles</em>
As 6 moles of thiosulfate reacted per mole of iodate:
5.0x10⁻⁴ moles KIO₃ ₓ (6 moles Na₂S₂O₃ / 1 mole KIO₃) =
<em>3.0x10⁻³ moles of Na₂S₂O₃. </em>In 6.5mL (6.5x10⁻³L):
3.0x10⁻³moles Na₂S₂O₃ / 6.5x10⁻³ L = 0.46M NaS₂O₃