The partial pressure of gas C is 0.902 atm
calculation
partial pressure of gas c =[( percent by volume of gas C / total percent) x total pressure]
percent by volume of gas C= 22%
Total percent = 36% +42% + 22% = 100 %
Total pressure = 4.1 atm
partial pressure of gas C is therefore = 22/100 x 4.1 atm = 0.902 atm
A compound<span> is a </span>molecule<span> that contains at least two different elements. </span>All compounds<span> are </span>molecules<span> but not </span>all molecules<span> are </span>compounds<span>. </span>Molecularhydrogen (H2<span>), </span>molecular<span> oxygen (O</span>2<span>) and </span>molecular<span> nitrogen (N</span>2) are notcompounds<span> because each is composed of a single element.</span>
1 mol of Br = 79.9 g
15.7 g / 79.9 g = 0.196 moles of atoms
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
Answer:
I believe the answer you're looking for is DNA, not sure though