1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
9

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.

Physics
1 answer:
sveta [45]3 years ago
6 0

Answer:

the two ice skater have the same momentum but the are in different directions.

Paula will have a greater speed than Ricardo after the push-off.

Explanation:

Given that:

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.

A. Which skater, if either, has the greater momentum after the push-off? Explain.

The law of conservation of can be applied here in order to determine the skater that possess a greater momentum after the push -off

The law of conservation of momentum states that the total momentum of two  or more objects acting upon one another will not change, provided there are no external forces acting on them.

So if two objects in motion collide, their total momentum before the collision will be the same as the total momentum after the collision.

Momentum is the product of mass and velocity.

SO, from the information given:

Let represent the mass of Paula with m_{Pa} and its initial velocity with u_{Pa}

Let represent the mass of Ricardo with m_{Ri} and its initial velocity with u_{Ri}

At rest ;

their velocities will be zero, i.e

u_{Pa} = u_{Ri} = 0

The initial momentum for this process can be represented as :

m_{Pa}u_{Pa} +  m_{Ri}u_{Ri} = 0

after push off from each other then their final velocity will be v_{Pa} and v_{Ri}

The we can say their final momentum is:

m_{Pa}v_{Pa} +   m_{Ri}v_{Ri} = 0

Using the law of conservation of momentum as states earlier.

Initial momentum = final momentum = 0

m_{Pa}u_{Pa} +  m_{Ri}u_{Ri} =  m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}

Since the initial velocities are stating at rest then ; u = 0

m_{Pa}(0) + m_{Pa}(0) = m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}

m_{Pa}v_{Pa} +   m_{Ri}v_{Ri}  = 0

m_{Pa}v_{Pa} = - m_{Ri}v_{Ri}

Hence, we can conclude that the two ice skater have the same momentum but the are in different directions.

 B. Which skater, if either, has the greater speed after the push-off? Explain.

Given that Ricardo weighs more than Paula

So m_{Ri} > m_{Pa} ;

Then \mathsf{\dfrac{{m_{Ri}}}{m_{Pa} }= 1}

The magnitude of their momentum which is a product of mass and velocity can now be expressed as:

m_{Pa}v_{Pa} =  m_{Ri}v_{Ri}

The ratio is

\dfrac{v_{Pa}}{v_{Ri}} =\dfrac{m_{Ri}}{m_{Pa}} = 1

v_{Pa} >v_{Ri}

Therefore, Paula will have a greater speed than Ricardo after the push-off.

You might be interested in
Pls help answer embed <br>​
Savatey [412]

Answer:

C = 1.01

Explanation:

Given that,

Mass, m = 75 kg

The terminal velocity of the mass, v_t=60\ m/s

Area of cross section, A=0.33\ m^2

We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,

Weight of the object = drag force

R = W

or

\dfrac{1}{2}\rho CAv_t^2=mg

Where

\rho is the density of air = 1.225 kg/m³

C is drag coefficient

So,

C=\dfrac{2mg}{\rho Av_t^2}\\\\C=\dfrac{2\times 75\times 9.8}{1.225\times 0.33\times (60)^2}\\\\C=1.01

So, the drag coefficient is 1.01.

5 0
3 years ago
two objects are in uniform circular motion at the same speed but at different radii. the ones with the __ radius has the largest
Cerrena [4.2K]

Answer:the one with the smaller radius has the highest centripetal force

Explanation:

5 0
2 years ago
Read 2 more answers
5/137 Under the action of its stern and starboard bow thrusters, the cruise ship has the velocity vB = 1 m/s of its mass center
quester [9]

The image is missing, so i have attached it;

Answer:

A) V_rel = [-(2.711)i - (0.2588)j] m/s

B) a_rel = (0.8637i + 0.0642j) m/s²

Explanation:

We are given;

the cruise ship velocity; V_b = 1 m/s

Angular velocity; ω = 1 deg/s = 1° × π/180 rad = 0.01745 rad/s

Angular acceleration;α = -0.5 deg/s² = 0.5 x π/180 rad = -0.008727 rad/s²

Now, let's write Velocity (V_a) at A in terms of the velocity at B(V_b) with r_ba being the position vector from B to A and relative velocity (V_rel)

Thus,

V_a = V_b + (ω•r_ba) + V_rel

Now, V_a = 0. Thus;

0 = V_b + (ω•r_ba) + V_rel

V_rel = -V_b - (ω•r_ba)

From the image and plugging in relevant values, we have;

V_rel = -1[(cos15)i + (sin15)j] - (0.01745k * -100j)

V_rel = - (cos15)i - (sin15)j - 1.745i

Note that; k x j = - i

V_rel = [-(2.711)i - (0.2588)j] m/s

B) Let's write the acceleration at A with respect to B in terms of a_b.

Thus,

a_a = a_b + (α*r_ba) + (ω(ω•r_ba)) + (2ω*v_rel) + a_rel

a_a and a_b = 0.

Thus;

0 = (α*r_ba) + (ω(ω•r_ba)) + (2ω*v_rel) + a_rel

a_rel = - (α*r_ba) - (ω(ω•r_ba)) - (2ω*v_rel)

Plugging in the relevant values with their respective position vectors, we have;

a_rel = - (-0.008727k * -100j) - (0.01745k(0.01745k * -100j)) - (2*0.01745k * [-(2.711)i - (0.2588)j])

a_rel = 0.8727i - (0.01745² x 100)j + 0.0946j - 0.009i

Note that; k x j = - i and k x i = j

Thus,simplifying further ;

a_rel = 0.8637i + 0.0642j m/s²

4 0
3 years ago
a student measure the mass of an 8 cm^3 block of brown sugar to be 12.9 g. what is the density of the brown sugar?
schepotkina [342]
Density = mass / volume ;
1 Cubic Centimeter = 0,000001 Cubic Meter
8 cm^3 = 0.000008 m^3
12,9 g = 0,0129 kg


The density is 0,0129 kg/ 0,000008 m^3 = <span><u>1612,5 kg/m^3</u> </span>
4 0
3 years ago
Consider a thin, spherical shell of radius 14.5 cm with a total charge of 29.5 µC distributed uniformly on its surface. (a) Find
ra1l [238]

Answer:

10.0     zero, by Gauss' Law the symmetrical distribution will produce no internal electric fields

21.5     E = k Q / R^2     behaves as if all charge were at center

E = 9 E9 * 29.5 E-6 / .215^2 = 5.74E6 N/C

8 0
2 years ago
Other questions:
  • From an electromagnetic wave the electric and magnetic field is what direction toward each other?
    7·1 answer
  • What is circular motion​
    8·2 answers
  • the lenses in a students eyes have arefractive power of 52. 0 diopters when she is able to focus on the board if the distance be
    7·1 answer
  • What is the wavelength of a wave with a frequency of 200Hz while traveling at 125.5m/s
    15·1 answer
  • What are the Big Five Personality Factors?
    5·2 answers
  • if you drop a stone from height of 2.5m. what is the speed of the stone right before it hits the ground?
    11·1 answer
  • TRUE/FALSE, the scientific question is written like “I wonder if [dependent variable] is affected by [independent variable].”
    15·1 answer
  • Which of the following situations has more kinetic energy than potential energy?
    6·1 answer
  • Can there be situation when velocity is constant but speed is not
    12·2 answers
  • A golf ball is hit so that it leaves the club face at a velocity of 45m/s at an angle of 40° to the horizontal. by ignoring the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!