<span>The distance between wave crests is called wavelength. It is a characteristic shared by waves of all kinds, including ocean waves and sound waves. Wavelength is measured from the highest point, or summit, of one wave's crest to the summit of the next wave's <span>crest</span></span>
<span><span>hope this helps</span></span>
Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.
Answer:
Wavelength
Explanation:
Wavelength is the distance between two corresponding consecutive phases of a waveform. It is usually represented by λ in the mathematical expressions.
A continuous propagating wave repeats its wavelength over the distance.
A wave has crest and trough with respect to time and space.
Wave is defined as a disturbance of any parameter repeated in a cyclic manner over the given time.
If there is no friction, the force that moves the box forward horizontally must be matched by the same force.
If there is friction, then the force moving it forward = frictional force + the additional force you need to add.