If you really want to find out the answer just pray about it and it will come to you..
Um, this doesn't make any sense. By climbing a hill, you are decreasing your momentum and kinetic energy, so it slows you down. The only positive, is after you have climbed the hill, you have more potential energy, and it will be released once you go down the hill, but you will not be as fast as if you ignored the hill.
The part that causes the disc caliper piston to retract when the brakes are released is the square-cut O-ring.
The square cut seal is the most important part of a disc brake caliper, for keeping the brake behind the piston so that when you step on the brake pedal, it releases a pressure that applied to the piston which in return applies the pad to the rotor.
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1