Answer:
F = 24 N
Explanation:
In this exercise we have a bar l = 100 m with a center of gravity x = 4 m, which force is needed to lift it from the other end
Let's use the rotational equilibrium relationship, where we consider the counterclockwise rotations as positive and fix the reference system at the point closest to the center of gravity
∑ τ = 0
F l -x W = 0
F = 
let's calculate
F =
4/100 600
F = 24 N
Answer:
2000 ohms
Explanation:
Resisters in series just add.
Rt = R1 + R2 + R3
R1 = 650 ohm
R2 = 350 ohm
R3 = 1000 ohm
Rt = 650 + 350 + 1000
Rt = 2000 ohms.
Answer;
C.It is the minimum amount of material needed to sustain a fission reaction.
Explanation;
-A critical mass is the smallest or the minimum amount of fissile material needed for a sustained nuclear chain reaction. A critical mass must be achieved in order for the chain reaction to continue and release the atomic energy. A critical mass is needed for both a nuclear reactor and an atomic or hydrogen bomb.
-The critical mass of a fissionable material depends upon its nuclear properties (specifically, the nuclear fission cross section), its density, its shape, its enrichment, its purity, its temperature, and its surroundings.
Baseball? ........................sorry if it’s wrong