<u><em>Answer:</em></u>
- <em>Respect </em>
- <em>Confidentiality </em>
<u><em /></u>
<u><em>Explanation:</em></u>
<em>*Hope this helps*</em>
<u><em /></u>
Answer:
Density, melting point. and magnetic properties
Explanation:
I can think of three ways.
1. Density
The density of Cu₂S is 5.6 g/cm³; that of CuS is 4.76 g/cm³.
It should be possible to distinguish these even with high school equipment.
2. Melting point
Cu₂S melts at 1130 °C (yellowish-red); CuS decomposes at 500 °C (faint red).
A Bunsen burner can easily reach these temperatures.
3. Magnetic properties
You can use a Gouy balance to measure the magnetic susceptibilities.
In Cu₂S the Cu⁺ ion has a d¹⁰ electron configuration, so all the electrons are paired and the solid is diamagnetic.
In CuS the Cu²⁺ ion has a d⁹ electron configuration, so all there is an unpaired electron and the solid is paramagnetic.
A sample of Cu₂S will be repelled by the magnetic field and show a decrease in weight.
A sample of CuS will be attracted by the magnetic field and show an increase in weight.
In the picture below, you can see the sample partially suspended between the poles of an electromagnet.
Answer: <em>When you take the top off of a bottle of soda, the pressure inside the bottle decreases and goes to the same pressure as the atmosphere. When that happens the carbon dioxide inside is no longer forced to be a liquid and turns back into a gas, causing the bubbles that we're so familiar with.</em>
Explanation:
However, producing foaming carbon dioxide gas by shaking a bottle of soda water is a physical change, while producing foaming carbon dioxide gas by combining baking soda and vinegar is a chemical change. ... Because no chemical bonds are broken and no new molecules are formed, this is a physical change in the system.
Most animals obtain their nutrients by the consumption of other organisms. At the cellular level, the biological molecules necessary for animal function are amino acids, lipid molecules, nucleotides, and simple sugars. However, the food consumed consists of protein, fat, and complex carbohydrates.