Answer:
Option B is correct. A nuclear alpha decay
Explanation:
Step 1
This equation is a nuclear reaction. So it can be an alpha decay or a beta decay
An α-particle is a helium nucleus. It contains 2 protons and 2 neutrons, for a mass number of 4.
During α-decay, an atomic nucleus emits an alpha particle. It transforms (or decays) into an atom with an atomic number 2 less and a mass number 4 less.
Thus, radium-226 decays through α-particle emission to form radon-222 according to the equation that is showed.
A Beta decay occurs when, in a nucleus with too many protons or too many neutrons, one of the protons or neutrons is transformed into the other.
Option B is correct. A nuclear alpha decay
Answer:
See explanation
Explanation:
The magnitude of electronegativity difference between atoms in a bond determines whether that bond will be polar or not.
If the electronegativity difference between atoms in a bond is about 1.7, the bond is ionic. If the electronegativity difference is greater than 0.4 and less than 1.7, the bond will have a polar covalent character. Lastly, if the electronegativity difference between the bond is less than or equal to 0.4, the covalent bond is non polar.
The electronegativity difference between carbon and hydrogen is about 0.4 which corresponds to a nonpolar covalent bond hence the molecule is nonpolar.
The electronegativity difference between carbon and fluorine is about 1.5 indicating a highly polar bond. This gives CH3F an overall dipole moment thereby making the molecule polar.
Answer: I belive the answer is A
Explanation:
Use a magnet to separate the iron from the sand.
Answer=3
<span>Decomposition, double replacement, and synthesis are 3 types of chemical reactions.</span>