Answer:
Contributes to the membrane potential.
Explanation:
Sodium-potassium pump: In cellular physiology, a protein which is identified in many cells that helping in to maintain the higher concentration of potassium ions inside than that is in the surrounding medium and maintain the lower concentration of sodium ions inside than that of the surrounding medium.
This unbalanced charge transfer contributes in the separation of charge across the cell membrane. Sodium-potassium pump is known for important contributor to action potential which is produce by nerve cells.
In the context of multivalent ions, it is when it has multiple oxidative states.
Answer:
The resultant structure is shown below. This structure contains four shared pairs of electrons, which are located on all four "sides" of carbon's electron dot structure. Each of these shared pairs was created by pairing one of carbon's unpaired electrons with an unpaired electron from chlorine.
Explanation:
Answer:
1.7 ppm
Explanation:
Original amount N' = 2.6 ppm
time to testing t = 24 hr
final amount N = 2.1 ppm
Using exponential inhibited decay, we have
N = N'e^(-kt)
Where
N is the new reading
N' is the original reading
t is the decay time
k is the decay constant
Substituting, we have
2.1 = 2.6 x e^(-k x 24)
2.1 = 2.6 x e^(-24k)
0.808 = e^(-24k)
We take the natural log of both sides of the equation
Ln 0.808 = Ln (e^(-24k))
-0.213 = - 24k
K = 0.213/24 = 0.00886
After 48 hrs, the reading of free chlorine will be
N = 2.6 x e^(-0.00886 x 48)
N = 2.6 x e^(-0.425)
N = 2.6 x 0.654
N = 1.7 ppm