1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
3 years ago
11

What does the reaction rate say about a reaction?

Chemistry
1 answer:
stealth61 [152]3 years ago
3 0

Answer:

It tells how quickly products will be made.

Explanation:

ap3

x

You might be interested in
Select the pair that consists of a base and its conjugate acid in that order. CO32−/CO22−
lana [24]

Answer: The pair that consists of a base and its conjugate acid in that order.NH_3/NH_4^+

Explanation:

According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.

H_3PO_4\rightarrow H_PO_4{2^-}+2H^+

H_2CO_3\rightarrow HCO_3^-+H^+

NH_3+H^+\rightarrow NH_4^+

HCO_3^-\rightarrow CO_3^{2-}+H^+

NH_3  is gaining a proton, thus it is considered as a brønsted-lowry base and after gaining a proton, it formsNH_4^+  which is a conjugate acid.

3 0
3 years ago
if 200.0 of copper (II) sulfate react with an excess of zinc metal, what is the theoretical yield of copper?
kobusy [5.1K]
79.63 grams, hope this helps! 
7 0
3 years ago
A peptide was analyzed with the following results. What is the primary sequence of the peptide?
AleksandrR [38]
Imma be honest, idrk tbh
7 0
3 years ago
Is Octylphenol ethoxylate a solvent or solute
Pie

Answer:

its a solute

Explanation:

8 0
4 years ago
Find the pH during the titration of 20.00 mL of 0.1000 M butanoic acid, CH3CH2CH2COOH (K a = 1.54 × 10 − 5), with 0.1000 M NaOH
Zina [86]

Here is the full question

Find the pH during the titration of 20.00 mL of 0.1000 M butanoic acid, CH3CH2CH2COOH (K a = 1.54 × 10 − 5), with 0.1000 M NaOH solution after the following additions of titrant (total volume of added base given):

a) 10.00 mL  

pH   = <u>                        </u>

b) 20.10 mL

pH   = <u>                        </u>

c) 25.00 mL

pH   = <u>                        </u>

<u />

Answer:

pH = 4.81

pH = 10.40

pH = 12.04

Explanation:

a)

Number of moles of butanoic acid

= 20.00 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002000 mol

Number of moles of NaOH added

= 10.00 \ mL * \frac{L}{1000 \ mL }* \frac{0.1000 \ mol }{L}

= 0.001000 mol

pKa of butanoic acid = - log Ka

= - log ( 1.54 × 10⁻⁵)

= 4.81

Equation for the reaction is expressed as follows:

CH₃CH₂CH₂COOH    +  OH⁻   ----->   CH₃CH₂COO⁻   +   H₂O

The ICE Table is expressed as follows:

                    CH₃CH₂CH₂COOH    +  OH⁻   ----->   CH₃CH₂COO⁻   +   H₂O

Initial                 0.002000                  0.001000               0

Change            - 0.001000                - 0.001000         + 0.001000  

Equilibrium         0.001000                         0                   0.001000

Total Volume = (20.00 + 10.00 ) mL

=  30.00 mL = 0.03000 L

Concentration of  [CH₃CH₂CH₂COOH] = \frac{0.001000 \ mol}{ 0.03000 \ L }

= 0.03333 M

Concentration of [CH₃CH₂COO⁻]  = \frac{0.001000 \ mol}{ 0.03000 \ L}

= 0.03333 M

By Henderson- Hasselbalch equation

pH = pKa + log \frac{conjugate \ base}{acid }

pH = pKa + log \frac{CH_3CH_2CH_2COO^-}{CH_3CH_2CH_2COOH}

PH = 4.81  + log \frac{0.03333}{0.03333}

pH = 4.81

Thus; the pH of the resulted buffer solution after 10.00 mL of NaOH was added = 4.81

b )

After the equivalence point, we all know that the pH of the solution will now definitely be determined by the excess H⁺

Number of moles of butanoic acid

= 20.00 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002000 mol

Number of moles of NaOH added

= 20.10 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002010 mol

Following the previous equation of reaction , The ICE Table for this process is as follows:

                    CH₃CH₂CH₂COOH    +  OH⁻   ----->   CH₃CH₂COO⁻   +   H₂O

Initial                 0.002000                  0.002010               0

Change           - 0.002000                -0.002000         + 0.002000  

Equilibrium         0                                0.000010            0.002000

We can see here that the base is present in excess;

NOW, number of moles of base present in excess

= ( 0.002010 - 0.002000) mol

= 0.000010 mol

Total Volume = (20.00 + 20.10 ) mL

= 40.10 mL × \frac{1 \ L}{1000 \ mL }

= 0.04010 L

Concentration of acid [OH⁻] = \frac{0.000010 \ mol}{0.04010 \ L }

= 2.494*10^{-4} M

Using the ionic  product of water:

[H_3O^+] = \frac{K \omega }{[OH^-]}

where

K \omega = 10^{-14}

[H_3O^+] = \frac{1.0*10^{-14}}{2.494*10^{-14}}

= 4.0*10^{-11}M

pH = - log [H_3O^+}]

pH = - log [4.0*10^{-11}M]

pH = 10.40

Thus, the pH of the solution after the equivalence point = 10.40

c)

After the equivalence point, pH of the solution is determined by the excess H⁺.

Number of moles of butanoic acid

= 20.00 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002000 mol

Number of moles of NaOH added

= 25.00 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002500 mol

From our chemical equation; The ICE Table can be illustrated as follows:

                    CH₃CH₂CH₂COOH    +  OH⁻   ----->   CH₃CH₂COO⁻   +   H₂O

Initial                 0.002000                 0.002500               0

Change           - 0.002000                -0.002000           +0.002000  

Equilibrium         0                               0.000500            0.002000

Base is present in excess

Number of moles of base present in excess = [ 0.002500 - 0.002000] mol

= 0.000500 mol

Total Volume = ( 20.00 + 25.00 ) mL

= 45.00 mL

= 45.00 × \frac{1 \ L}{1000 \ mL }

= 0.04500 L

Concentration of acid [OH⁻] = \frac{0.0005000 \ mol}{ 0.04500 \ L }

= 0.01111 M

Using the ionic product of water [H_3O^+] = \frac{K \omega }{[OH^+]}

= \frac{1.0*10^{-14}}{0.01111}

= 9.0*10^{-13} M

pH = - log [H_3O^+}]

pH = - log [9.0*10^{-13}M]

pH = 12.04

Thus, the pH of the solution after the equivalence point = 12.04

4 0
3 years ago
Other questions:
  • How does the structure of the stigma aid in pollination?
    7·2 answers
  • A silver block, initially at 56.1 ∘C, is submerged into 100.0 g of water at 24.0 ∘C, in an insulated container. The final temper
    12·1 answer
  • What is the value of life
    5·1 answer
  • Drag each label to the correct image. Each label can be used more than once.
    14·2 answers
  • The boiling point of water is 100°C. During an experiment, water came to a boil at 97°C according to the thermometer that was be
    15·1 answer
  • What is the limiting reactant ?
    8·1 answer
  • Conpare and constrast chemical and physical change give an example of each
    13·1 answer
  • Why do atoms of different elements vary in size?
    10·2 answers
  • design techniques and mayerials that reduce the negative environmental impact of a structure are referred to as__?
    13·1 answer
  • Balance the following reaction:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!