I have a solution here that has a slight change in given where instead of <span>(4, 32), it is (3, 18). However, since the solution has provided explanations on each process, step-by-step, I believe that by thoroughly analyzing it, you might just answer this problem on your own!
</span>
f(x) = 2x² ← this is the parabola
f(3) = 2 * 9 = 18 → the parabola passes through A (3 ; 18), so its tangent line too
f'(x) = 4x ← this is the derivative
…and the derivative is the slope of the tangent line to the curve at x
f'(3) = 4 * 3 = 12 ← this is the slope of the tangent line to the curve at x = 3
Equation of the tangent line
The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept
You know that the slope of the tangent line is 12.
The equation of the tangent line becomes: y = 12x + b
The tangent line passes through A (3 ; 18), so these coordinates must verify the equation of the tangent line.
y = 12x + b
b = y - 12x → you substitute x and y by the coordinates of the point A (3 ; 18)
b = 18 - 36 = - 18
→ The equation of the tangent line is: y = 12x - 18
Intersection between the tangent line to the curve and the x-axis: → when y = 0
y = 12x - 18 → when y = 0
12x - 18 = 0
12x = 18
x = 3/2
→ Point B (3/2 ; 0)
Intersection between the vertical line passes through the point A and the x-axis: → when x = 3
→ Point C (3 ; 0)
The equation of the vertical line is: x = 3
Area of the region bounded by the parabola y = 2x², the tangent line to this parabola at (3 ; 18), and the x-axis.
= (area of the region bounded by the parabola y = 2x² and the x-axis) - (area of the triangle ABC)
= [∫ (from 0 to 3) of the parabola] - [(xC - xB).(yA - yC)/2]
= [∫ (from 0 to 3) 2x².dx] - [(xC - xB).(yA - yC)/2]
= { [(2/3).x³] from 0 to 3 } - { [3 - (3/2)].(18 - 0)/2 }
= [(2/3) * 3³] - { [(6/2) - (3/2)] * 9 }
= [(2/3) * 27] - { [(3/2) * 9 }
= 18 - (27/2)
= (36/2) - (27/2)
= 9/2 square unit
<span>The denominators are already the same, so just subtract the numerators to get 2/11.</span>
Answer:
-sighs - i just cant get rid of you can i
Step-by-step explanation:
Answer:
the answer is c, (-10,4) and the radius is 10
Step-by-step explanation:
Hope this helps!❆
Complete Question
The complete question is shown on the first uploaded image
Answer:
a
![g(h(x)) = \sqrt[4]{x^2 + x +5} + 3](https://tex.z-dn.net/?f=g%28h%28x%29%29%20%3D%20%5Csqrt%5B4%5D%7Bx%5E2%20%2B%20x%20%2B5%7D%20%2B%203)
b
![h(g(x)) = \sqrt{x} + 7\sqrt[4]{x} + 17](https://tex.z-dn.net/?f=h%28g%28x%29%29%20%20%3D%20%5Csqrt%7Bx%7D%20%20%2B%207%5Csqrt%5B4%5D%7Bx%7D%20%2B%2017)
c
![h(h(x)) = [x^2 + x + 5 ]^2 + x^2 + x + 10](https://tex.z-dn.net/?f=h%28h%28x%29%29%20%3D%20%20%5Bx%5E2%20%2B%20x%20%2B%205%20%5D%5E2%20%2B%20x%5E2%20%2B%20x%20%2B%2010)
Step-by-step explanation:
From the question we are told that

and
![g(x) = \sqrt[4]{x} + 3](https://tex.z-dn.net/?f=g%28x%29%20%3D%20%5Csqrt%5B4%5D%7Bx%7D%20%2B%203)
Considering first question
Now we are told g(h(x))
i.e
![g(h(x)) = [x^2 + x + 5 ]^{\frac{1}{4} } + 3](https://tex.z-dn.net/?f=g%28h%28x%29%29%20%3D%20%20%5Bx%5E2%20%2B%20x%20%2B%205%20%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%2B%203)
=> ![g(h(x)) = \sqrt[4]{x^2 + x +5} + 3](https://tex.z-dn.net/?f=g%28h%28x%29%29%20%3D%20%5Csqrt%5B4%5D%7Bx%5E2%20%2B%20x%20%2B5%7D%20%2B%203)
Considering second question
Now we are told h(g(x))
i.e
![h(g(x)) = [x^{\frac{1}{4} } + 3]^2 + x^{\frac{1}{4} } + 3 + 5](https://tex.z-dn.net/?f=h%28g%28x%29%29%20%3D%20%20%5Bx%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%2B%203%5D%5E2%20%2B%20%20x%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%20%2B%203%20%2B%205)
=> 
=> 
=> ![h(g(x)) = \sqrt{x} + 7\sqrt[4]{x} + 17](https://tex.z-dn.net/?f=h%28g%28x%29%29%20%20%3D%20%5Csqrt%7Bx%7D%20%20%2B%207%5Csqrt%5B4%5D%7Bx%7D%20%2B%2017)
Considering third question
![h(h(x))= [x^2 + x + 5]^2 + [x^2 + x + 5 ] + 5](https://tex.z-dn.net/?f=h%28h%28x%29%29%3D%20%5Bx%5E2%20%2B%20x%20%2B%205%5D%5E2%20%2B%20%5Bx%5E2%20%2B%20x%20%2B%205%20%5D%20%2B%20%205)
=> ![h(h(x)) = [x^2 + x + 5 ]^2 + x^2 + x + 10](https://tex.z-dn.net/?f=h%28h%28x%29%29%20%3D%20%20%5Bx%5E2%20%2B%20x%20%2B%205%20%5D%5E2%20%2B%20x%5E2%20%2B%20x%20%2B%2010)