1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
2 years ago
12

A sound wave travels with a velocity of 1.5 m/s and has a frequency of 500 Hz. What is its wavelength?

Physics
1 answer:
Ilia_Sergeevich [38]2 years ago
8 0
Velocity, wavelength, and frequency.

Wave velocity (v) is how fast a wave propagates in a given medium. Its unit is meter per second. Check the speed calculator for more information about speed and velocity.

Wavelength (λ) is the distance over which the shape of a wave repeats. It depends on the medium in which a wave travels. It is measured in meters.

Frequency (f) of a wave refers to how many times (per a given time duration) the particles of a medium vibrate when the wave passes through it. The unit of frequency is Hertz or 1/second.
You might be interested in
 
Over [174]
What Kepler's constant ? ? ! ?

The only constant in Kepler's laws is in the third one, where it says something to the
effect that (square of a body's period) / (cube of its distance from the central body)
is a constant.

That means it's a constant for multiple little ones orbiting the same central body.
But it's not the same constant for other central bodies.

It's one constant for the planets, asteroids, and comets orbiting the sun.

It's a different constant for the moon, TV satellites, weather satellites,
and military satellites orbiting the Earth.
4 0
3 years ago
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
2 years ago
Stephanie serves a volleyball from a height of 0.80 m and gives it an initial velocity of +7.2 m/s straight up. how high will th
Papessa [141]
<span>3.78 m Ignoring resistance, the ball will travel upwards until it's velocity is 0 m/s. So we'll first calculate how many seconds that takes. 7.2 m/s / 9.81 m/s^2 = 0.77945 s The distance traveled is given by the formula d = 1/2 AT^2, so substitute the known value for A and T, giving d = 1/2 A T^2 d = 1/2 9.81 m/s^2 (0.77945 s)^2 d = 4.905 m/s^2 0.607542 s^2 d = 2.979995 m So the volleyball will travel 2.979995 meters straight up from the point upon which it was launched. So we need to add the 0.80 meters initial height. d = 2.979995 m + 0.8 m = 3.779995 m Rounding to 2 decimal places gives us 3.78 m</span>
7 0
3 years ago
What is the definition of motivation?
elixir [45]
Motivation is an encouragement to do or achieve something
5 0
3 years ago
Consider a well-insulated rigid container with two chambers separated by a membrane. The total volume is 5.0 cubic meters. The f
mamaluj [8]

Answer:

The Entropy generated by the steam = 2.821 kJ/K

Explanation:

Total volume of container = 5m³

Heat transfer does not exist between system and surrounding, dQ = 0

At the first chamber, temperature of water at saturated liquid is 300°C

From the steam table:

Specific enthalpy of saturated liquid at 300°C , h_{f} = 1344.8 kJ/kg

Specific internal energy of saturated liquid at 300°C, U_{f1} =  1332.7 kJ/kg

For closed system, the first law of thermodynamics state that:

dQ = dw + dU..................(1)

work done for free expansion, dw =0

0 = 0 + dU

dU = 0 , i.e. U₁ = U₂

At the second chamber,

The final pressure, P₂ = 50 kPa

From the steam table, at P₂ = 50 kPa,  U_{f2} = 340.49 kJ/kg

(U_{fg} )_{2} =  2142.7 kJ/kg

Let the dryness fraction at the second chamber = x

U_{2} = U_{f2} + U_{fg2}

U_{2} = 340.49 + x2140.7Since U₁ = U₂

1332.7 = 340.49 + x2140.7

Dryness fraction, x = 0.463

From steam table, the specific volume is, u_{f2} = 0.00103 m^{3} /kg\\

u_{2} = u_{f2} + xu_{fg2}

u_{2} = 0.00103 + 0.463(3.2393)\\u_{2} = 1.5 m^{3} /kg\\

u_{2} = \frac{v_{2} }{m_{2} }

V₂ = 5 m³

1.5 = 5/m₂

m₂ = 3.33 kg

At 300°C S_{1} = S_{f} = 3.2548 kJ/kg-k\\

S_{2} = S_{f2} + xS_{fg2}

From the steam table,

S_{f2} = 1.0912 kJ/kg-k\\S_{fg2} = 6.5019 kJ/kg-k\\S_{2} = 1.0912 + 0.463(6.5019)\\S_{2} = 4.102 kJ/kg-k

Therefore the entropy generated will be :

Entropy = mass* (S₂ - S₁)

Entropy = 3.33* (4.102 - 3.2548)

Entropy = 2.821 kJ/K

5 0
3 years ago
Read 2 more answers
Other questions:
  • A charge of 0.14 C is moved from a position where the electric potential is 20 V to a position where the electric potential is 5
    12·1 answer
  • Your answer should be precise to 0.1 m/s. Use a gravitational acceleration of 10 m/s/s. At it lowest point, a pendulum is moving
    15·2 answers
  • Suppose you were to fill a balloon with air then let go of it withoutntying it closed. What causes the balloon to fly away?
    7·2 answers
  • Hydrogen cyanide is poisonous liquid that has a faint almond like smell. one molecule of hydrogen cyanide is made up of one hydr
    6·2 answers
  • Ingrid is moving a box from the ground into the back of a truck. She uses 20 N of force to move the box 5 meters. If she uses an
    11·1 answer
  • A ball is thrown horizontally from a height of 19 m and hits the ground with a speed that is five times its initial speed. What
    14·1 answer
  • A girl runs at a speed of 3.9 m/s off a high dive and hit the water 1.8 s later.
    9·1 answer
  • Question 9 of 20
    10·1 answer
  • IMPORTANT!!! DUE IN 5 MINS I NEED HELP PLEASE
    9·1 answer
  • if length of the spring is doubled, what will happen to its time period? if mass of the spring is doubled and spring constant wi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!