It looks like they are all units of measurement:
FOOT - POUND - NEWTON - METER
Answer:
Inertia Newtons First law
Explanation:
Both momentum and kinetic energy are conserved in elastic collisions (assuming that this collision is perfectly elastic, meaning no net loss in kinetic energy)
To find the final velocity of the second ball you have to use the conversation of momentum:
*i is initial and f is final*
Δpi = Δpf
So the mass and velocity of each of the balls before and after the collision must be equal so
Let one ball be ball 1 and the other be ball 2
m₁ = 0.17kg
v₁i = 0.75 m/s
m₂ = 0.17kg
v₂i = 0.65 m/s
v₂f = 0.5
m₁v₁i + m₂v₂i = m₁v₁f + m₂v₂f
Since the mass of the balls are the same we can factor it out and get rid of the numbers below it so....
m(v₁i + v₂i) = m(v₁f + v₂f)
The masses now cancel because we factored them out on both sides so if we divide mass over to another side the value will cancel out so....
v₁i + v₂i = v₁f + v₂f
Now we want the final velocity of the second ball so we need v₂f
so...
(v₁i + v₂i) - v₁f = v₂f
Plug in the numbers now:
(0.75 + 0.65) - 0.5 = v₂f
v₂f = 0.9 m/s
<h3># Question </h3>
Q1- the speed will increase because the particles will have more energy which causes them to move faster
Explanation:
<h3>With an increase in temperature, the particles gain kinetic energy and move faster. The actual average speed of the particles depends on their mass as well as the temperature – heavier particles move more slowly than lighter ones at the same temperature. </h3>
Answer:
0.775
Explanation:
The weight of an object on a planet is equal to the gravitational force exerted by the planet on the object:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the object
R is the radius of the planet
For planet A, the weight of the object is

For planet B,

We also know that the weight of the object on the two planets is the same, so

So we can write

We also know that the mass of planet A is only sixty percent that of planet B, so

Substituting,

Now we can elimanate G, MB and m from the equation, and we get

So the ratio between the radii of the two planets is
