

<h2><em>hope</em><em> it</em><em> helps</em></h2>
Answer:
i. Keq=4157.99.
ii. More hydrogen sulfide will be produced.
Explanation:
Hello,
i. In this case, for the concentrations at equilibrium on the given chemical reaction, the equilibrium constant results:
![Keq=\frac{[H_2S]^2}{[H_2]^2[S_2]} =\frac{(0.97M)^2}{(0.051M)^2(0.087)} =4157.99](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5BS_2%5D%7D%20%3D%5Cfrac%7B%280.97M%29%5E2%7D%7B%280.051M%29%5E2%280.087%29%7D%20%3D4157.99)
ii. Now, by means of the Le Chatelier's principle, the addition of a reactant shifts the reaction towards products, it means that more hydrogen sulfide will be produced in order to reach equilibrium.
Best regards.
Answer: The reaction is exothermic
The
value is negative.
Heat is a product.
Explanation:

Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and
for the reaction comes out to be positive.
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
The substances which are written on the left side of the arrow are reactants and the substances which are written on the right side of the arrow are products. Thus heat is a product.
Doping Se (group VI elements) with P(group V)elements would produce a P-TYPE semiconductor with HIGHER conductivity compared to pure Se
the reason is P dopant will introduce holes in the Se as P has lesser valence electron
Answer:
0.645 liters
Explanation:
THE QUESTION IS equivalent 0.645 Liters