Answer:
V = 22.42 L/mol
N₂ and H₂ Same molar Volume at STP
Explanation:
Data Given:
molar volume of N₂ at STP = 22.42 L/mol
Calculation of molar volume of N₂ at STP = ?
Comparison of molar volume of H₂ and N₂ = ?
Solution:
Molar Volume of Gas:
The volume occupied by 1 mole of any gas at standard temperature and pressure and it is always equal to 22.42 L/ mol
Molar volume can be calculated by using ideal gas formula
PV = nRT
Rearrange the equation for Volume
V = nRT / P . . . . . . . . . (1)
where
P = pressure
V = Volume
T= Temperature
n = Number of moles
R = ideal gas constant
Standard values
P = 1 atm
T = 273 K
n = 1 mole
R = 0.08206 L.atm / mol. K
Now put the value in formula (1) to calculate volume for 1 mole of N₂
V = 1 x 273 K x 0.08206 L.atm / mol. K / 1 atm
V = 22.42 L/mol
Now if we look for the above calculation it will be the same for H₂ or any gas. so if we compare the molar volume of 1 mole N₂ and H₂ it will be the same at STP.
<h3><u>Answer</u>;</h3>
Actual yield = 46.44 g
<h3><u>Explanation;</u></h3>
1 mole of water = 18 g/mol
Therefore;
The experimental yield = 2.58 moles
equivalent to ; 2.58 × 18 = 46.44 g
The theoretical value is 47 g
Percentage yield = 46.44/47 × 100%
= 98.8%
The questions asks for actual yield = 46.44 g
<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>
Answer:
13.06800 nanometers
Explanation:
i hope you had understand !
Answer:
See explaination
Explanation:
See attachment for the drawing of the intermediate products b and c (both are neutral; omit byproducts).