Atoms show us the basic proverb about the strength and the bond when they are Unity and Diversified.
<u>Explanation:</u>
- Every basic matter in the earth is composed of atoms. It is the smallest unit of the matter which is taken to observe the properties of the whole element.
- The atom consists of different energy levels and consist of protons electrons and neutrons.
- The atoms when are compactly arranged it result in the great strength required to bring the deformation in shape which shows that unity is always great.
- But in the liquid and gas, the atoms are arranged in a randomly dispersed pattern which shows that they can be separated and involved in any process easier to get the heterogeneous product easily which is an example for Diversity.
Answer:
nope its a myth don't worry :)
If you mean hydrate as in <em>MgSO4 · 7H2O, </em>then simply find the molar mass of each element you see.
For the example above, that means you would add the molar mass (found on the periodic table) of Mg, then S, then 4(O), 14(H), and 7(O).
The results would be your molar mass for the hydrate.
I hope this is what you meant by your question!
Answer:
26.5 g
Explanation:
First we convert 100.0 mL to L:
- 100.0 mL / 1000 = 0.100 L
Now we <u>calculate how many moles of sodium carbonate are needed</u>, using the <em>definition of molarity</em>:
- Molarity = moles / liters
- moles = molarity * liters
- 2.5 M * 0.100 L = 0.25 mol
Finally we <u>convert 0.25 moles of sodium carbonate into grams</u>, using its <em>molar mass</em>:
- 0.25 mol * 106 g/mol = 26.5 g