Answer:
0.0303 Liters
Explanation:
Given:
Mass of the potassium hydrogen phosphate = 0.2352
Molarity of the HNO₃ Solution = 0.08892 M
Now,
From the reaction it can be observed that 1 mol of potassium hydrogen phosphate reacts with 2 mol of HNO₃
The number of moles of 0.2352 g of potassium hydrogen phosphate
= Mass / Molar mass
also,
Molar mass of potassium hydrogen phosphate
= 2 × (39.09) + 1 + 30.97 + 4 × 16 = 174.15 g / mol
Number of moles = 0.2352 / 174.15 = 0.00135 moles
thus,
The number of moles of HNO₃ required for 0.00135 moles
= 2 × 0.00135 mol of HNO₃
= 0.0027 mol of HNO₃
Now,
Molarity = Number of Moles / Volume
thus,
for 0.0027 mol of HNO₃, we have
0.08892 = 0.0027 / Volume
or
Volume = 0.0303 Liters
The volume of a gas that occupies 9 L at a temperature of 325K is 12.46L.
<h3>How to calculate volume?</h3>
The volume of a given gas can be calculated using the following Charle's law equation:
V1/T1 = V2/T2
Where;
- T1 = initial temperature
- T2 = final temperature
- V1 = initial volume
- V2 = final volume
- V1 = 9L
- V2 = ?
- T1 = 325K
- T2 = 450K
9/325 = V2/450
325V2 = 4050
V2 = 4050/325
V2 = 12.46L
Therefore, the volume of a gas that occupies 9 L at a temperature of 325K is 12.46L.
Learn more about volume at: brainly.com/question/2817451
<span>In the formation of a solution,
energy is required to overcome the forces of attraction between the solvent
particles. The first step is for the solvent particles to move in order for
solute particles to enter the system. This process is endothermic where energy
flows into the system. The second step is when solute particles must separate
from other solute particles. Lastly, the solute should move between solvent
particles.</span>
1)They are all take up space.
2)They all have mass.
3)They are all solids.
Because of 1 and 2, they are all matter.
Answer:
Therefore, the rate of change in the amount of salt is 

Explanation:
Given:
Initial volume of water
lit
Flowing rate = 5 
The rate of change in the amount of salt is given by,
( Rate of salt enters tank - rate of sat leaves tank )
Since tank is initially filled with water so we write that,

Let amount of salt in the solution is
,


Therefore, the rate of change in the amount of salt is 
