Answer:
0.00471 grams H₂O
Explanation:
To determine the mass, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat capacity (J/g°C)
-----> ΔT = temperature change (°C)
The specific heat capacity of water is 4182 J/g°C. You can plug the given values into the equation and simplify to isolate "c".
Q = 0.709 J c = 4182 J/g°C
m = ? g ΔT = 0.036 °C
Q = mcΔT <----- Equation
0.709 J = m(4182 J/g°C)(0.036 °C) <----- Insert values
0.709 J = m(150.552) <----- Multiply 4182 and 0.036
0.00471 = m <----- Divide both sides by 150.552
The number of bacteria is given by:
N(t) = N(o) x 2ⁿ
Where N(t) is the number after n hours have passed and N(o) is the original number which is 15.
The number grown in the 12th hour is the difference in the number after the 11th and the 12th hour. Thus:
15 x 2¹² - 15 x 2¹¹
= 30,720 bacteria
Answer:
Atoms He (Avogadro’s number) → Moles of He (molar mass of He) → Mass of He
• molar mass of He (from the periodic table) = 4.003 g/mol
• Avogadro’s Number: Avogadro’s number gives us the number of entities present in 1 mole: 6.022 × 1023 He atoms in 1 mole of He
hope this is help full please mark me Brainliest
FeCl₂ + 2NH₄OH → Fe(OH)₂ + 2NH₄Cl