1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
3 years ago
9

A group of students collected the data shown below while attempting to measure the coefficient of static friction (of course, it

looks like this group varied the amount of mass sitting on the block with each trial - this is not recommended). Nonetheless, what is their average coefficient of static friction?
Trial Mass of block (g) Hanging mass (kg)
1 105 0.053
2 165 0.081
3 220 0.118
4 280 0.149
5 315 0.180
6 385 0.198
Physics
1 answer:
anzhelika [568]3 years ago
8 0

Answer:

0.130

Explanation:

From the given data, the coefficient of static friction for each trial are:

1. 0.053

2. 0.081

3. 0.118

4. 0.149

5. 0.180

6. 0.198

The sum of the coefficient of static friction = 0.053 + 0.081 + 0.118 + 0.149 + 0.180 + 0.198

                                              = 0.779

So that;

the average coefficient of static friction = \frac{sum of coefficient of static friction}{number of trials}

                                              = \frac{0.779}{6}

                                              = 0.12983

The average coefficient of static friction is 0.130

You might be interested in
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1
notka56 [123]

Complete Question

Part of the question is shown on the first uploaded image

The rest of the question

What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.

Answer:

The net force exerted on the third charge is  F_{net}=  3.22*10^{-5} \ J

Explanation:

From the question we are told that

    The third charge is  q_3 =  55 nC =  55 *10^{-9} C

    The position of the third charge is  x = -1.220 \ m

     The first charge is q_1 =  -16 nC  =  -16 *10^{-9} \ C

     The position of the first charge is x_1 =  -1.650m

      The second charge is  q_2 =  32 nC  =  32 *10^{-9} C

      The position of the second charge is  x_2 =   0  \ m  

The distance between the first and the third charge is

      d_{1-3} =  -1.650 -(-1.220)

     d_{1-3} = -0.43 \ m

The force exerted on the third charge by the first is  

     F_{1-3} =  \frac{k  q_1 q_3}{d_{1-3}^2}

Where k is the coulomb's constant with a value  9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.

substituting values

      F_{1-3} =  \frac{9*10^{9}* 16 *10^{-9} * (55*10^{-9})}{(-0.43)^2}

       F_{1-3} = 4.28 *10^{-5} \ N

 The distance between the second and the third charge is      

  d_{2-3} =  0- (-1.22)

   d_{2-3} =1.220 \ m

The force exerted on the third charge by the first is mathematically evaluated as

       F_{2-3} =  \frac{k  q_2 q_3}{d_{2-3}^2}

substituting values

       F_{2-3} =  \frac{9*10^{9} * (32*10^{-9}) *(55*10^{-9})}{(1.220)^2}

       F_{2-3} =  1.06*10^{-5} N

The net force is

      F_{net} =  F_{1-3} -F_{2-3}

substituting values

    F_{net} = 4.28 *10^{-5} - 1.06*10^{-5}

    F_{net}=  3.22*10^{-5} \ J

6 0
3 years ago
This phenomenon is known as the bends. If a scuba diver rises quickly from a depth of 25.0 m in Lake Michigan (which is fresh wa
Sveta_85 [38]

Explanation:

Attachments of the solution are below.

6 0
3 years ago
A 15.0 kg turntable with a radius of 25 cm is covered with a uniform layer of dry ice that has a mass of 9.0 kg. The angular spe
liubo4ka [24]

Answer:

 ω₂=1.20

Explanation:

Given that

mass of the turn table ,M= 15 kg

mass of the ice ,m= 9 kg

radius ,r= 25 cm

Initial angular speed ,ω₁ = 0.75 rad/s

Initial mass moment of inertia

I_1=\dfrac{M+m}{2}r^2

I_1=\dfrac{15+9}{2}\times 0.25^2\ kg.m^2

I_1=0.75\ kg.m^2

Final mass moment of inertia

I_2=\dfrac{M}{2}r^2

I_2=\dfrac{15}{2}\times 0.25^2\ kg.m^2

I_2=0.468\ kg.m^2

Lets take final speed of the turn table after ice evaporated =ω₂ rad/s

Now by conservation angular momentum

I₁ ω₁ =ω₂ I₂

\omega_2=\dfrac{0.75\times 0.75}{0.468}\ rad/s

ω₂=1.20

7 0
3 years ago
A tennis ball travelling at a speed of 46m/s with a mass of 58kg. Calculate the kinetic<br>energy​
Zanzabum

Answer:

its 1/2 the mass of the object times by its velocity ^ 2

7 0
3 years ago
23. If a jogger runs 100 meters west and then turns around and runs 30 meters east. What
marshall27 [118]

Answer:

A

Explanation:

if he goes to the west, the east is opposite so 100-30

7 0
3 years ago
Read 2 more answers
Other questions:
  • A cylindrical tube sustains standing waves at the following frequencies: 600 Hz, 800 Hz, and 1000 Hz. The tube does not sustain
    9·1 answer
  • Calculate the speed of an object that tavels 62.43m in 38.4s
    8·1 answer
  • Simone created a chart to summarize the energy transformations that take place when energy from the wind is used to generate ele
    11·2 answers
  • The energy releasing process that breaks down large molecules into smaller ones is what?
    5·1 answer
  • Use what you know about mass and how you use it to calculate force in the following situation. If each washer has a mass of 4.9
    15·2 answers
  • I NEED ANSWERS QUICK
    11·2 answers
  • Question 3 of 5
    14·1 answer
  • Which title goes with this list: Amendments Articles Preamble?
    9·1 answer
  • D. What is one watt power? Calculate the power of
    13·1 answer
  • What kind of substance can you pour from one container into another without
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!