Answer:
- 278.34 kg m/s^2
Explanation:
The rate of the change of momentum is the same as the force.
The force that an object feels when moviming in a circular motion is given by:
F = -mrω^2
Where ω is the angular speed and r is the radius of the circumference
Aditionally, the tangential velocity of the body is given as:
v = rω
The question tells us that
v = 25 m/s
r = 7m
mv = 78 kg m/s
Therefore:
m = (78 kg m/s) / (25 m/s) = 3.12 kg
ω = (25 m/s) / (7 m) = 3.57 (1/s)
Now, we can calculate the force or rate of change of momentum:
F = - (3.12 kg) (7 m)(3.57 (1/s))^2
F = - 278.34 kg m/s^2
The beginning of the Phanerozoic is marked by the development of hard body parts, such as shells and bones.
The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
<h3 /><h3>What is speed?</h3>
Speed can be defined as the ratio of the total distance traveled by a body to the total time taken.
To calculate the speed of the sound in the xenon, we use the formula below.
Formula:
- v = λf............. Equation 1
Where:
- v = Speed of the sound in xenon
- f = Frequency
- λ = Wavelength.
From the question,
Given:
- f = 440 Hz
- λ = 40.4 cm = 0.404 m
Substitute the values above into equation 1
- v = 440(0.404)
- v = 177.76 m/s.
- v ≈ 178 m/s
Hence, The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
Learn more about speed here: brainly.com/question/4931057
Answer:
r = 1.61 x 10^{11} m
Explanation:
energy radiated (H) = 2.7 x 10^31 W
surface temperature (T) = 11,000 k
assuming ε = 1 and taking σ = 5.67 x 10^{-8} W/m^{2}.K^{4}
we can find the radius of the star from the equation below
H = A x ε x σ x T^{4}
where area (A) = 4 x π x r^{2} (assuming it is a sphere)
therefore the equation becomes
H = 4 x π x r^{2} x ε x σ x T^{4}
2.7 x 10^31 = 4 x π x r^{2} x 1 x 5.67 x 10^{-8} x (11,000)^{4}
r = 
r = 1.61 x 10^{11} m