Explanation:
Hydraulic Pressure-Control, On-Off Deluge Valve
FP-400Y-5DC
The BERMAD model 400Y-5DC is an elastomeric, hydraulic line pressure operated deluge valve, designed specifically for advanced fire protection systems and the latest industry standards. The 400Y-5DC is activated by a hydraulically operated relay valve, through which opening and closing of the valve can be controlled either with a remote hydraulic command or with a wet pilot line with closed fusible plugs. An integral pressure reducing pilot valve ensures a precise, stable, pre-set downstream water pressure. The optional valve position indicator can include a limit switch suitable for Fire & Gas monitoring systems. The 400Y-5DC is ideal for systems that combine a remote wet pilot line with a high pressure water supply.
The magnitude of the current in wire 3 is 2.4 A and in a direction pointing in the downward direction.
- The force per unit length between two parallel thin current-carrying
and
wires at distance ' r ' is given by
....(1) .
- If the current is flowing in both wires in the same direction, and the force between them will be the attractive force and if the current is flowing in opposite direction in wires then the force between them will be the repulsive force.
A schematic of the information provided in the question can be seen in the image attached below.
From the image, force on wire 2 due to wire 1 = force on wire 2 due to wire 3

Using equation (1) , we get

I₃ = 2.4 A and the current is pointing in the downward direction
Learn more about the magnitude and direction of forces here:
brainly.com/question/14879801?referrer=searchResults
#SPJ4
According to Coulomb's Law , The size of the force varies inversely as the square of the distance between the two charges. So ,if the distance between the two charges is doubled, the electrostatic force will become weak by one fourth of the original force.
R = 18 ohms
Explanation:
Given:
V = 36 volts
I = 2.0 A
R = ?
Use Ohm's law to solve for the resistance:
V = IR
or
R = V/I
= (36 volts)/(2.0 A)
= 18 ohms
Answer:
2. ( b ) zero
3. ( c ) 10 s
4. Uniform then decreasing
Explanation:
2.
Since the motion is uniform, initial and final velocity will be 0, hence acceleration will be zero.
3.
Initial velocity ( u ) = 5 m/s
Final velocity ( v ) = 35 m/s
Acceleration ( a ) 3 m/s^2
To find : Time ( t )
Formula : -
t = v - u / a
= 35 - 5 / 3
= 30 / 3
t = 10 s