To determine how much of the barrel is left to fill, you must subtract the amount of water already in it from the total mass of the bucket.
25.5 - 5.2 = 20.3 Litres
In order to the fill the entire barrel, Kelly must collect 20.3 Litres of water. You must then covert the measurement from litres to millilitres so that the bucket and barrel are measured in the same units.
20.3L = 20300mL
You must then divide the amount of space left by the mass of the bucket. This will determine the least number of buckets needed to fill the barrel.
20300 <span>÷ 800 = 25.375
That means the you would have to do a minimum on 25.375 buckets to fill the barrel, or 26.
Hope this helps :) </span>
Answer:
P (X ≤ 4)
Step-by-step explanation:
The binomial probability formula can be used to find the probability of a binomial experiment for a specific number of successes. It <em>does not</em> find the probability for a <em>range</em> of successes, as in this case.
The <em>range</em> "x≤4" means x = 0 <em>or</em> x = 1 <em>or </em>x = 2 <em>or</em> x = 3 <em>or</em> x = 4, so there are five different probability calculations to do.
To to find the total probability, we use the addition rule that states that the probabilities of different events can be added to find the probability for the entire set of events only if the events are <em>Mutually Exclusive</em>. The outcomes of a binomial experiment are mutually exclusive for any value of x between zero and n, as long as n and p don't change, so we're allowed to add the five calculated probabilities together to find the total probability.
The probability that x ≤ 4 can be written as P (X ≤ 4) or as P (X = 0 or X = 1 or X = 2 or X = 3 or X = 4) which means (because of the addition rule) that P(x ≤ 4) = P(x = 0) + P(x = 1) + P (x = 2) + P (x = 3) + P (x = 4)
Therefore, the probability of x<4 successes is P (X ≤ 4)
First example, are those the only equations given?
Multiply 36 by 75 because they need to find how many yards they need
Answer: Well if one pound of yogurt cost 55 (cents)
Step-by-step explanation:
Two yogurts cost $1.10
Three yogurts cost $1.65
Four yogurts cost $2.20
Five yogurts cost $2.75
And finally...
Six yogurts cost $3.30
Hope this helps! :)