Answer:
The balanced equation for this reaction is C2H2 + 502 + 4H2O + 3C02. What volume of carbon dioxide is produced when 2.8 L of oxygen are consumed? 25Explanation:
Answer:
76.5g KCl/74.55 grams per mole Kcl = x
molality= x/.085 kg H2O
Explanation:
well remember molality is moles of solute/kilograms of solvent. So it's the moles of KCl over 85 g of h20 converted into kg. if this makes sense.
This may help you
First write and balance the equation, being:
CaCO3 - CaO + CO2
Then, using the periodic table, find the molecular masses of CaCO3 and of CaO, finding their ratio. That will be 100g:56g or 0.1kg:0.056kg. Since you have 4.7kg of CaCO3, it corresponds to Xkg of CaO. Making x the subject, it should be X= 4.7*0.056/100=0,002632
The solution for this problem is:
Get into moles first. .0560 grams over 540.8 grams per mole = 1.04 x l0^-4 moles
Sr3(As04)2 = 3 Sr++(aq) plus 2 As04^-3(aq)
Ksp = (Sr++)^3(As04^-3)^2
(Sr++) = 3 X 1.04 x l0^-4= 3.11 x l0^-4
(As04^-3) = 2 x 1.04 x l0^-4= 2.07 x l0^-4
Ksp = (1.04 x l0^-4)^3 (2.07 x l0^-4)^2 which equals 4.82 x 10^-20
Answer:
0.0187 M
Explanation:
Step 1: Write the balanced neutralization reaction
NaOH + HCl ⇒ NaCl + H₂O
Step 2: Calculate the reacting moles of HCl
18.7 mL of 0.01500 M HCl react.
0.0187 L × 0.01500 mol/L = 2.81 × 10⁻⁴ mol
Step 3: Calculate the reacting moles of NaOH
The molar ratio of HCl to NaOH is 1:1. The reacting moles of NaOH are 1/1 × 2.81 × 10⁻⁴ mol = 2.81 × 10⁻⁴ mol.
Step 4: Calculate the molarity of NaOH
2.81 × 10⁻⁴ moles are in 15.00 mL of NaOH.
[NaOH] = 2.81 × 10⁻⁴ mol/0.01500 L = 0.0187 M