Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
Answer:
MgCl₂+ Na₂CO₃ ==> MgCO₃ + NaCl
From a quick observation
You see that the right hand side of the eqn is deficient of Sodium and Chlorine
Simply Add a Coefficient of 2 to NaCl to balance it with the left.
Your answer now becomes
MgCl₂ + Na₂CO₃ ==> MgCO₃ + 2NaCl.✅
Answer:
Hydration (of an alkene)
Mechanism : Electrophilic addition.
Answer:
Equilibrium is the state of balance. Where opposing forces cancel each other out and no changes are occurring.
<em>Good luck, hope this helps :)</em>