Answer:
Its single - displacement.
Explanation:
61.24 is the molar mass of a gas which has a density of 0.00249 g/mL at 20.0 degrees celcius and 744.0 mm Hg.
Explanation:
given that:
density = 0.00249 g/ml () or 2.49 grams/litre
P = 744 mm Hg OR 0.978 atm
T = 20 Degrees or 293.15 Kelvin
R = 0.08206 Litre atm/mole K
molar mass =?
Formula used/
PV = nRT equation 1
here n is number of moles:
n =
putting the value of n and value of density in the equation 1:
PV = x RT
molar mass = x
= density x
=
= 61.24 is the molar mass of the gas.
The answer your looking for is a)
-please give me brainliest answer
Answer:
Mean Partial pressure of Nitrogen in Mars' atmosphere = 15.86 Pa
Explanation:
According to Dalton's law of Partial Pressure, the total pressure exerted by a mixture of ideal gases (that do not react together) is the sum of the partial pressures of the individual gases that make up the mixture. It goes further to explain that the partial pressure of a gas in a mixture of gases is equal to its mole fraction of that gas multipled by the total pressure exerted by the mixture of gases.
Total Pressure exerted by the mixture of gases in the atmosphere on Mars = Mean atmospheric pressure on Mars = 610 Pa
Partial pressure of Nitrogen = (mole fraction or mole percentage of Nitrogen in the atmosphere) × (total pressure exerted by all the gases in the atmosphere)
Mole percentage of Nitrogen in the atmosphere of Mars = 2.6%
Partial pressure of Nitrogen = 2.6% × 610 = 15.86 Pa
Mean Partial pressure of Nitrogen in Mars' atmosphere = 15.86 Pa
Hope this Helps!!!
Answer:
Explanation:
Most people when asked, “What is the equation of a line?”, will answer, “y = mx + b”. This is the
equation of a line in what is called slope-intercept form where “m” is the slope and “b” is the yintercept. So, how do you find the equation of a line? There are several different ways that you can find
the equation of a line. I find the equation of a line everytime by following the same three steps:
Step 1: Find the slope of the line.
Step 2: Use the slope to find the y-intercept.
Step 3: Use steps 1 and 2 to write the answer.
I will explain these steps by looking a several examples. Please understand that there are often several
different ways to complete each math problem, but I have found through the years that students are most
successful when the do problems the same way each and every time they attempt the problem. If you
know a different way to find the answer that is great, but I am going to show how to do the problem one
way and use the same technique everytime I see this problem.