。☆✼★ ━━━━━━━━━━━━━━ ☾
I believe the answer would be A. equal temperature
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
Mass over volume
200 over100
2
Answer:
4,38%
small molecular volumes
Decrease
Explanation:
The percent difference between the ideal and real gas is:
(47,8atm - 45,7 atm) / 47,8 atm × 100 = 4,39% ≈ <em>4,38%</em>
This difference is considered significant, and is best explained because argon atoms have relatively <em>small molecular volumes. </em>That produce an increasing in intermolecular forces deviating the system of ideal gas behavior.
Therefore, an increasing in volume will produce an ideal gas behavior. Thus:
If the volume of the container were increased to 2.00 L, you would expect the percent difference between the ideal and real gas to <em>decrease</em>
<em />
I hope it helps!
The radius of the cation is much smaller than the corresponding neutral atom.(b) The radius of an anion is much larger than the corresponding neutral atom.Explanation:The size of the atom or ion is inversely proportional to the nuclear charge experienced by the electrons.(a)The size of the cation is smaller than the size of the corresponding neutral atom. This is because after removal of an electron from the highest principle energy level the nuclear charge experienced by the valence electrons increases resulting in the decrease in size.(b)The size of an anion is larger than the size of the corresponding neutral atom. In an anion, an extra electron is added to the highest principle energy level but the effective nuclear charge pulling the electrons towards the nucleus is still same. The net effective nuclear charge experienced by the electrons present in the outermost shell decrease. Moreover, due to the added electron, the repulsion between the electrons also increases resulting in the increase in size
Make since? i hope this helps
Answer:
12 Ethene gas, CH is completely burned in excess oxygen to form carbon dioxide and water
The equation for this exothermic reaction is shown.
CH 30, - 200, 2H,0
The table shows the bond energies involved in the reaction
bond
bond energy
(kJ/moly
614
413
C-C
CHH
0 0
СО
495
799
O-H
467
What is the total energy change in this reaction?
A-954 kJ/mol
B-1010 kJ/mol
C-1313 kJ/mol
D-1359 kJ/mol
Explanation:
thats all you said