We have the value of
Total energy produced in the chemical reaction=653 550 KJ
Time needed=142.3min
To calculate the rate of energy transfer, that is the amount of energy produced per minute.
Rate of energy transfer=
=
=4592.76 KJ min⁻¹
So, the rate of energy transfer is 4592.76 KJ min⁻¹.
Answer:
Take a look at the attachment below
Explanation:
Take a look at the periodic table. As you can see, Rubidium is the closest element to Cesium, and happens to have the closest boiling point to Cesium, with only a difference of about 30 degrees.
Respectively, you would think that fluorine should have the least similarity to Cesium with respect to it's boiling point, considering it is the farthest away from the element out of the 4 given. This is not an actual rule, there are no fixed trends of boiling points in the periodic table, there are some but overall the trends vary. However in this case fluorine does have the least similarity to Cesium with respect to it's boiling point, a difference of about 1,546.6 degrees.
<em>Hope that helps!</em>
Answer:
A
Explanation:
Molecules of a gas are relatively more compressible than those of liquids and solids because they are relatively far apart without any intermolecular forces between them. However, at lower temperature and higher pressure, there is now a significant intermolecular interaction between the gas molecules and they are no longer relatively far apart. Hence they are more compressible than liquids and solids which already possess significant intermolecular interaction and thus a definite volume.
Within the core of the Sun, temperatures and pressures are high enough to fuse hydrogen atoms into helium, which is the Sun's main form of energy production. Assuming there was a slight mistake in where you have copied the results here the correct answer is the third option.
Hope this helps!