Answer:
-12.5 kJ/mol
Explanation:
The free-energy predicts if a reaction is spontaneous or not. If it is, ΔG < 0. When a reaction happens by steps, the free-energy of the global reaction can be calculated by the sum of the free-energy of the steps (Hess law). If it's needed to operations at the reaction the same operation must be done in the value of ΔG (if the reaction is inverted, the signal of ΔG must be inverted).
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
ATP → ADP + Pi ∆G'° = –30.5 kJ/mol (x-1)
--------------------------------------------------------------------------------------
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
Pi + ADP → ATP ∆G'° = 30.5 kJ/mol
The bold compounds are in opposite sides, so they'll be canceled in the sum of the reactions:
Phosphocreatine + ADP → creatine + ATP
∆G'° = -43.0 + 30.5
∆G'° = -12.5 kJ/mol
Answer:
a) That of Al is higher than that of Mg because Mg wants to lose the second electron, so it is easier to take the second electron away
Answer:
c. chloroacetate ion
Explanation:
The chloroacetic acid, ClCH₂CO₂H, is a weak acid with Ka = 1.36x10⁻³. When this weak acid is in solution with its conjugate base, ClCH₂CO₂⁻ (From sodium chloroacetate) a buffer is produced. The addition of a strong acid as the HCl produce the following reaction
HCl + ClCH₂CO₂⁻ → ClCH₂CO₂H + Cl⁻.
Where the acid reacts with the chloroacetate ion to produce more chloroacetic acid
That means, the HCl reacts with the chloroacetate ion present in the buffer solution
Right answer is:
<h3>c. chloroacetate ion</h3>
To determine the amplitude of a transverse wave, measure the highest amount of disturbance from the equilibrium that the wave experiences.
Electron transitions from higher to lower energy levels cause emission of energy in the form of electromagnetic waves, each with their own specific wavelength. Because the energy levels of elements are quantized, each transition has a specific energy difference. The collection of these transitions makes up the emission spectrum and each spectrum is unique to a specific element, allowing identification.