Answer:
It's true.
Explanation:
It's true. When we connect two resistors in parallel the current is divided between the two in such a way that the sum of the currents on each resistor should be equal to the current on that branch. By finding the equivalent resistance we can use Ohm's law to determine the voltage drop across the resistors. This voltage drop is the same for both, since they're connected in parallel.
The displacement is the vector with
magnitude
distance between position at 5 sec and position at 8 sec
and direction
direction from position at 5 sec to position at 8 sec .
The route followed during the time interval is irrelevant.
For each load, Work = (mass) x (gravity) x (distance .
Bigger load: Work = (10 kg) x (9.8 m/s²) x (2 m) = 196 joules .
Smaller load: Work = (5 kg) x (9.8 m/s²) x (4 m) = 196 joules.
The work required is equal in both cases.
The mass ratio of 2:1 is exactly balanced by
the height ratio of 1:2 .
Momentum is mass in motion and only applies to objects in motion. It's a term that describes a relationship between the mass and velocity of an object, and we can see this when it is written in equation form, p = mv, where p is momentum, m is mass in kg and v is velocity in m/s.