Answer:
a) 12.8212 N
b) 12.642 N
Explanation:
Mass of bucket = m = 0.54 kg
Rate of filling with sand = 56.0 g/ sec = 0.056 kg/s
Speed of sand = 3.2 m/s
g= 9.8 m/sec2
<u>Condition (a);</u>
Mass of sand = Ms = 0.75 kg
So total mass becomes = bucket mass + sand mass = 0.54 +0.75=1.29 kg
== > total weight = 1.29 × 9.8 = 12.642 N
Now impact of sand = rate of filling × velocity = 0.056 × 3.2 = 0.1792 kg. m /sec2=0.1792 N
Scale reading is sum of impact of sand and weight force ;
i-e
scale reading = 12.642 N+0.1792 N = 12.8212 N
<u>Codition (b);</u>
bucket mass + sand mass = 0.54 +0.75=1.29 kg
==>weight = mg = 1.29 × 9.8 = 12.642 N (readily calculated above as well)
∑F = ma = (90 kg)(1.2 m/s²) = 108 N = 100 N (1 significant digit)
Increased by a factor of 4
Let k = the force constant of the spring (N/m).
The strain energy (SE) stored in the spring when it is compressed by a distance x=0.35 m is
SE = (1/2)*k*x²
= 0.5*(k N/m)*(0.35 m)²
= 0.06125k J
The KE (kinetic energy) of the sliding block is
KE = (1/2)*mass*velocity²
= 0.5*(1.8 kg)*(1.9 m/s)²
= 3.249 J
Assume that negligible energy is lost when KE is converted into SE.
Therefore
0.06125k = 3.249
k = 53.04 N/m
Answer: 53 N/m (nearest integer)
<span>D. price ceiling
</span><span>This is a government regulation that establishes a maximum price for a particular good.</span><span>
</span>