The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.
Answer: IT'S MUTATION I TOOK THE TEST ITS RIGHT HOPE THIS HELPED :)
B is true because liquids are still more compact than gases, although they are loose, they aren't completely free. They also don't have a definite volume, making them assume the shape of their container. As for compression, liquids are harder to compress compared to gases.
Answer:
Explanation:
complete combustion reaction of ethane is given by the reaction
2C2H6+7O2..............4CO2+6H2O
no of moles in 34 grams of O2=34/32=1.063
7mole of O2 produced 6 moles of H2O
therefore 1.063 moles of O2 produced=1.063*6/7=0.9 moles
now 0.9 moles of H2O contain how much grams=0.9*18=16.2 grams