2 mol KClO₃ - 3 mol O₂
x mol KClO₃ - 9 mol O₂
x=9*2/3= 6 mol
Vanadium (V)
Vanadium is the only one in the 4th period here so
Answer:
1.95*10²² molecules are in 5.50 grams of AgNO₃
Explanation:
Being the molar mass of the elements:
- Ag: 107.87 g/mole
- N: 14 g/mole
- O: 16 g/mole
then the molar mass of the compound is:
AgNO₃: 107.87 g/mole + 14 g/mole + 3*16 g/mole= 169.87 g/mole
Then you can apply the following rule of three: if 169.87 grams of the compound are present in 1 mole, 5.50 grams will be present in how many moles?

moles= 0.0324
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number applies to any substance.
You can apply the following rule of three: if by definition of Avogadro's Number 1 mole of the substance contains 6.023 * 10²³ molecules, 0.0324 moles how many molecules will it have?

molecules=1.95*10²²
<u><em>1.95*10²² molecules are in 5.50 grams of AgNO₃</em></u>
Answer is: four iron atoms <span>are reacting with every three molecules of oxygen.
Balanced chemical reaction: 4Fe + 3O</span>₂ → 2Fe₂O₃.
From chemical reaction: n(Fe) : n(O₂) = 4 : 3.
Ratios of atoms of iron and molecules of oxygen is 4 : 3..
There is four atoms of iron and six atoms of oxygen on both side of reaction.
<h2>DIFFERENCE BETWEEN CRYSTALLINE AND AMORPHOUS SOLIDS :</h2><h2><em><u> Amorphous solids do not have definite melting points but melt over a wide range of temperature because of the irregular shape. Crystalline solids, on the other hand, have a sharp melting point.</u></em></h2>