In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.
Answer:
Wavelength, 
Explanation:
Given that,
Mass of the particle, 
Acceleration of the particle, 
Time, t = 5 s
It starts from rest, u = 0
The De Broglie wavelength is given by :

v = a × t



Hence, this is the required solution.
It'd be an unbalanced force
Lets se
And


So

If spring constant is doubled mass must be doubled
Answer: 0.42 Amperes
Explanation:
Given that:
Current, I = ?
Electric charge Q = 100 coulomb
Time, T = 4.0 minutes
(The SI unit of time is seconds. so, convert 4.0 minutes to seconds)
If 1 minute = 60 seconds
4.0 minutes = 4.0 x 60 = 240 seconds
Since electric charge, Q = current x time
i.e Q = I x T
100 coulomb = I x 240 seconds
I = 100 coulomb / 240 seconds
I = 0.4167 Amperes (round to the nearest hundredth which is 0.42 amperes)
Thus, 0.42 Amperes of current flows in the circuit.