Answer:
The mean and the standard deviation of the sampling distribution of the number of students who preferred to get out early are 0.533 and 0.82
Step-by-step explanation:
According to the given data we have the following:
Total sample of students= 150
80 students preferred to get out 10 minutes early
Therefore, the mean of the sampling distribution of the number of students who preferred to get out early is = 80/150 = 0.533
Therefore, standard deviation of the sampling distribution of the number of students who preferred to get out early= phat - p0/sqrt(p0(1-p)/)
= 0.533-0.5/sqrt(0.5*0.5/15))
= 0.816 = 0.82
First, you must find the slope, which is -5-4/-1-4, or 1.8, and then put it in point-slope form, or y-4=1.8(x-2), which simplifies to y-4=1.8x-3.6, and so put it in general/standard form, you have to subtract 1.8x from both sides and then add 4 to both sides, and lastly divide both sides of the equation by -1.8 to get x+y=1.889, or x+y=1.6/1.8. This is not copied and pasted.
(a+b+c)/2. this is your answer. if it had the numbers i would solve it fully, but it only has variables.
Answer: Maria has 10 bills of 5€ and 10 bills of 10€.
She has a total of 150€.
Step-by-step explanation:
Let be "f" the number of 5€ bills that Maria has and "t" the number of 10€ bills that Maria has.
Set up a system of equations:

Use the Substitution method to solve the system of equations:
1. Solve for "f" from the first equation:

2. Substitute the equation obtained into the second equation and solve for "t".
Then:

3. Substitute the value of "t" into the equation
and evaluate:

Therefore, Maria has 10 bills of 5€ and 10 bills of 10 €.
So the total amount of money she has, is:

She has a total of 150€.